001     867948
005     20210130003952.0
024 7 _ |a 10.1038/nphoton.2017.126
|2 doi
024 7 _ |a 1749-4885
|2 ISSN
024 7 _ |a 1749-4893
|2 ISSN
024 7 _ |a altmetric:23333924
|2 altmetric
024 7 _ |a WOS:000406692600011
|2 WOS
037 _ _ |a FZJ-2019-06541
082 _ _ |a 530
100 1 _ |a Wuttig, M.
|0 P:(DE-Juel1)176716
|b 0
|e Corresponding author
245 _ _ |a Phase-change materials for non-volatile photonic applications
260 _ _ |a London [u.a.]
|c 2017
|b Nature Publ. Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1576595561_476
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Phase-change materials (PCMs) provide a unique combination of properties. On transformation from the amorphous to crystalline state, their optical properties change drastically. Short optical or electrical pulses can be utilized to switch between these states, making PCMs attractive for photonic applications. We review recent developments in PCMs and evaluate the potential for all-photonic memories. Towards this goal, the progress and existing challenges to realize waveguides with stepwise adjustable transmission are presented. Colour-rendering and nanopixel displays form another interesting application. Finally, nanophotonic applications based on plasmonic nanostructures are introduced. They provide reconfigurable, non-volatile functionality enabling manipulation and control of light. Requirements and perspectives to successfully implement PCMs in emerging areas of photonics are discussed.
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Bhaskaran, H.
|0 0000-0003-0774-8110
|b 1
700 1 _ |a Taubner, T.
|0 P:(DE-HGF)0
|b 2
773 _ _ |a 10.1038/nphoton.2017.126
|g Vol. 11, no. 8, p. 465 - 476
|0 PERI:(DE-600)2264673-5
|n 8
|p 465 - 476
|t Nature photonics
|v 11
|y 2017
|x 1749-4893
856 4 _ |u https://juser.fz-juelich.de/record/867948/files/nphoton.2017.126.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/867948/files/nphoton.2017.126.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:867948
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)176716
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT PHOTONICS : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF >= 30
|0 StatID:(DE-HGF)9930
|2 StatID
|b NAT PHOTONICS : 2017
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-10-20170113
|k PGI-10
|l JARA Institut Green IT
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-10-20170113
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21