000867953 001__ 867953
000867953 005__ 20210130003954.0
000867953 0247_ $$2doi$$a10.1002/adma.201706735
000867953 0247_ $$2ISSN$$a0935-9648
000867953 0247_ $$2ISSN$$a1521-4095
000867953 0247_ $$2Handle$$a2128/23678
000867953 0247_ $$2altmetric$$aaltmetric:39733221
000867953 0247_ $$2pmid$$apmid:29572962
000867953 0247_ $$2WOS$$aWOS:000431615100017
000867953 037__ $$aFZJ-2019-06546
000867953 082__ $$a660
000867953 1001_ $$00000-0001-8057-9742$$aZhu, Min$$b0
000867953 245__ $$aUnique Bond Breaking in Crystalline Phase Change Materials and the Quest for Metavalent Bonding
000867953 260__ $$aWeinheim$$bWiley-VCH$$c2018
000867953 3367_ $$2DRIVER$$aarticle
000867953 3367_ $$2DataCite$$aOutput Types/Journal article
000867953 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1576596698_476
000867953 3367_ $$2BibTeX$$aARTICLE
000867953 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000867953 3367_ $$00$$2EndNote$$aJournal Article
000867953 520__ $$aLaser‐assisted field evaporation is studied in a large number of compounds, including amorphous and crystalline phase change materials employing atom probe tomography. This study reveals significant differences in field evaporation between amorphous and crystalline phase change materials. High probabilities for multiple events with more than a single ion detected per laser pulse are only found for crystalline phase change materials. The specifics of this unusual field evaporation are unlike any other mechanism shown previously to lead to high probabilities of multiple events. On the contrary, amorphous phase change materials as well as other covalently bonded compounds and metals possess much lower probabilities for multiple events. Hence, laser‐assisted field evaporation in amorphous and crystalline phase change materials reveals striking differences in bond rupture. This is indicative for pronounced differences in bonding. These findings imply that the bonding mechanism in crystalline phase change materials differs substantially from conventional bonding mechanisms such as metallic, ionic, and covalent bonding. Instead, the data reported here confirm a recently developed conjecture, namely that metavalent bonding is a novel bonding mechanism besides those mentioned previously.
000867953 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000867953 588__ $$aDataset connected to CrossRef
000867953 7001_ $$00000-0001-6543-203X$$aCojocaru-Mirédin, Oana$$b1
000867953 7001_ $$00000-0002-8280-5413$$aMio, Antonio M.$$b2
000867953 7001_ $$00000-0001-7136-6905$$aKeutgen, Jens$$b3
000867953 7001_ $$aKüpers, Michael$$b4
000867953 7001_ $$00000-0002-3148-6600$$aYu, Yuan$$b5
000867953 7001_ $$00000-0002-7843-5480$$aCho, Ju-Young$$b6
000867953 7001_ $$00000-0002-1925-9624$$aDronskowski, Richard$$b7
000867953 7001_ $$0P:(DE-Juel1)176716$$aWuttig, Matthias$$b8$$eCorresponding author
000867953 773__ $$0PERI:(DE-600)1474949-x$$a10.1002/adma.201706735$$gVol. 30, no. 18, p. 1706735 -$$n18$$p1706735 -$$tAdvanced materials$$v30$$x0935-9648$$y2018
000867953 8564_ $$uhttps://juser.fz-juelich.de/record/867953/files/Zhu_et_al-2018-Advanced_Materials.pdf$$yOpenAccess
000867953 8564_ $$uhttps://juser.fz-juelich.de/record/867953/files/Zhu_et_al-2018-Advanced_Materials.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000867953 909CO $$ooai:juser.fz-juelich.de:867953$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000867953 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176716$$aForschungszentrum Jülich$$b8$$kFZJ
000867953 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000867953 9141_ $$y2019
000867953 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000867953 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000867953 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000867953 915__ $$0StatID:(DE-HGF)9920$$2StatID$$aIF >= 20$$bADV MATER : 2017
000867953 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV MATER : 2017
000867953 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000867953 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000867953 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000867953 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000867953 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000867953 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000867953 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000867953 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000867953 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000867953 920__ $$lyes
000867953 9201_ $$0I:(DE-Juel1)PGI-10-20170113$$kPGI-10$$lJARA Institut Green IT$$x0
000867953 980__ $$ajournal
000867953 980__ $$aVDB
000867953 980__ $$aUNRESTRICTED
000867953 980__ $$aI:(DE-Juel1)PGI-10-20170113
000867953 9801_ $$aFullTexts