001     867953
005     20210130003954.0
024 7 _ |a 10.1002/adma.201706735
|2 doi
024 7 _ |a 0935-9648
|2 ISSN
024 7 _ |a 1521-4095
|2 ISSN
024 7 _ |a 2128/23678
|2 Handle
024 7 _ |a altmetric:39733221
|2 altmetric
024 7 _ |a pmid:29572962
|2 pmid
024 7 _ |a WOS:000431615100017
|2 WOS
037 _ _ |a FZJ-2019-06546
082 _ _ |a 660
100 1 _ |a Zhu, Min
|0 0000-0001-8057-9742
|b 0
245 _ _ |a Unique Bond Breaking in Crystalline Phase Change Materials and the Quest for Metavalent Bonding
260 _ _ |a Weinheim
|c 2018
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1576596698_476
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Laser‐assisted field evaporation is studied in a large number of compounds, including amorphous and crystalline phase change materials employing atom probe tomography. This study reveals significant differences in field evaporation between amorphous and crystalline phase change materials. High probabilities for multiple events with more than a single ion detected per laser pulse are only found for crystalline phase change materials. The specifics of this unusual field evaporation are unlike any other mechanism shown previously to lead to high probabilities of multiple events. On the contrary, amorphous phase change materials as well as other covalently bonded compounds and metals possess much lower probabilities for multiple events. Hence, laser‐assisted field evaporation in amorphous and crystalline phase change materials reveals striking differences in bond rupture. This is indicative for pronounced differences in bonding. These findings imply that the bonding mechanism in crystalline phase change materials differs substantially from conventional bonding mechanisms such as metallic, ionic, and covalent bonding. Instead, the data reported here confirm a recently developed conjecture, namely that metavalent bonding is a novel bonding mechanism besides those mentioned previously.
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Cojocaru-Mirédin, Oana
|0 0000-0001-6543-203X
|b 1
700 1 _ |a Mio, Antonio M.
|0 0000-0002-8280-5413
|b 2
700 1 _ |a Keutgen, Jens
|0 0000-0001-7136-6905
|b 3
700 1 _ |a Küpers, Michael
|b 4
700 1 _ |a Yu, Yuan
|0 0000-0002-3148-6600
|b 5
700 1 _ |a Cho, Ju-Young
|0 0000-0002-7843-5480
|b 6
700 1 _ |a Dronskowski, Richard
|0 0000-0002-1925-9624
|b 7
700 1 _ |a Wuttig, Matthias
|0 P:(DE-Juel1)176716
|b 8
|e Corresponding author
773 _ _ |a 10.1002/adma.201706735
|g Vol. 30, no. 18, p. 1706735 -
|0 PERI:(DE-600)1474949-x
|n 18
|p 1706735 -
|t Advanced materials
|v 30
|y 2018
|x 0935-9648
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/867953/files/Zhu_et_al-2018-Advanced_Materials.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/867953/files/Zhu_et_al-2018-Advanced_Materials.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:867953
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)176716
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a IF >= 20
|0 StatID:(DE-HGF)9920
|2 StatID
|b ADV MATER : 2017
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV MATER : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-10-20170113
|k PGI-10
|l JARA Institut Green IT
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-10-20170113
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21