000867957 001__ 867957
000867957 005__ 20210130003956.0
000867957 0247_ $$2doi$$a10.1021/jacs.8b10448
000867957 0247_ $$2ISSN$$a0002-7863
000867957 0247_ $$2ISSN$$a1520-5126
000867957 0247_ $$2ISSN$$a1943-2984
000867957 0247_ $$2pmid$$apmid:30343568
000867957 0247_ $$2WOS$$aWOS:000451100600051
000867957 0247_ $$2altmetric$$aaltmetric:73119700
000867957 037__ $$aFZJ-2019-06550
000867957 082__ $$a540
000867957 1001_ $$00000-0002-2245-3057$$aZhou, Chongjian$$b0
000867957 245__ $$aHigh-Performance n-Type PbSe–Cu 2 Se Thermoelectrics through Conduction Band Engineering and Phonon Softening
000867957 260__ $$aWashington, DC$$bAmerican Chemical Society$$c2018
000867957 3367_ $$2DRIVER$$aarticle
000867957 3367_ $$2DataCite$$aOutput Types/Journal article
000867957 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1576593736_1171
000867957 3367_ $$2BibTeX$$aARTICLE
000867957 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000867957 3367_ $$00$$2EndNote$$aJournal Article
000867957 520__ $$aFrom a structural and economic perspective, tellurium-free PbSe can be an attractive alternative to its more expensive isostructural analogue of PbTe for intermediate temperature power generation. Here we report that PbSe0.998Br0.002-2%Cu2Se exhibits record high peak ZT 1.8 at 723 K and average ZT 1.1 between 300 and 823 K to date for all previously reported n- and p-type PbSe-based materials as well as tellurium-free n-type polycrystalline materials. These even rival the highest reported values for n-type PbTe-based materials. Cu2Se doping not only enhance charge transport properties but also depress thermal conductivity of n-type PbSe. It flattens the edge of the conduction band of PbSe, increases the effective mass of charge carriers, and enlarges the energy band gap, which collectively improve the Seebeck coefficient markedly. This is the first example of manipulating the electronic conduction band to enhance the thermoelectric properties of n-type PbSe. Concurrently, Cu2Se increases the carrier concentration with nearly no loss in carrier mobility, even increasing the electrical conductivity above ∼423 K. The resulting power factor is ultrahigh, reaching ∼21–26 μW cm–1 K–2 over a wide range of temperature from ∼423 to 723 K. Cu2Se doping substantially reduces the lattice thermal conductivity to ∼0.4 W m–1 K–1 at 773 K, approaching its theoretical amorphous limit. According to first-principles calculations, the achieved ultralow value can be attributed to remarkable acoustic phonon softening at the low-frequency region.
000867957 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000867957 588__ $$aDataset connected to CrossRef
000867957 7001_ $$0P:(DE-HGF)0$$aYu, Yuan$$b1
000867957 7001_ $$0P:(DE-Juel1)161289$$aLee, Yong Kyu$$b2
000867957 7001_ $$00000-0001-6543-203X$$aCojocaru-Mirédin, Oana$$b3
000867957 7001_ $$0P:(DE-HGF)0$$aYoo, Byeongjun$$b4
000867957 7001_ $$0P:(DE-HGF)0$$aCho, Sung-Pyo$$b5
000867957 7001_ $$0P:(DE-HGF)0$$aIm, Jino$$b6
000867957 7001_ $$0P:(DE-Juel1)176716$$aWuttig, Matthias$$b7
000867957 7001_ $$00000-0001-5959-6257$$aHyeon, Taeghwan$$b8
000867957 7001_ $$00000-0001-6274-3369$$aChung, In$$b9$$eCorresponding author
000867957 773__ $$0PERI:(DE-600)1472210-0$$a10.1021/jacs.8b10448$$gVol. 140, no. 45, p. 15535 - 15545$$n45$$p15535 - 15545$$tJournal of the American Chemical Society$$v140$$x1520-5126$$y2018
000867957 8564_ $$uhttps://juser.fz-juelich.de/record/867957/files/jacs.8b10448.pdf$$yRestricted
000867957 8564_ $$uhttps://juser.fz-juelich.de/record/867957/files/jacs.8b10448.pdf?subformat=pdfa$$xpdfa$$yRestricted
000867957 909CO $$ooai:juser.fz-juelich.de:867957$$pVDB
000867957 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176716$$aForschungszentrum Jülich$$b7$$kFZJ
000867957 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000867957 9141_ $$y2019
000867957 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000867957 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ AM CHEM SOC : 2017
000867957 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000867957 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000867957 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000867957 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000867957 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000867957 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000867957 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000867957 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000867957 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000867957 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000867957 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000867957 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000867957 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bJ AM CHEM SOC : 2017
000867957 920__ $$lyes
000867957 9201_ $$0I:(DE-Juel1)PGI-10-20170113$$kPGI-10$$lJARA Institut Green IT$$x0
000867957 980__ $$ajournal
000867957 980__ $$aVDB
000867957 980__ $$aI:(DE-Juel1)PGI-10-20170113
000867957 980__ $$aUNRESTRICTED