001     867957
005     20210130003956.0
024 7 _ |a 10.1021/jacs.8b10448
|2 doi
024 7 _ |a 0002-7863
|2 ISSN
024 7 _ |a 1520-5126
|2 ISSN
024 7 _ |a 1943-2984
|2 ISSN
024 7 _ |a pmid:30343568
|2 pmid
024 7 _ |a WOS:000451100600051
|2 WOS
024 7 _ |a altmetric:73119700
|2 altmetric
037 _ _ |a FZJ-2019-06550
082 _ _ |a 540
100 1 _ |a Zhou, Chongjian
|0 0000-0002-2245-3057
|b 0
245 _ _ |a High-Performance n-Type PbSe–Cu 2 Se Thermoelectrics through Conduction Band Engineering and Phonon Softening
260 _ _ |a Washington, DC
|c 2018
|b American Chemical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1576593736_1171
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a From a structural and economic perspective, tellurium-free PbSe can be an attractive alternative to its more expensive isostructural analogue of PbTe for intermediate temperature power generation. Here we report that PbSe0.998Br0.002-2%Cu2Se exhibits record high peak ZT 1.8 at 723 K and average ZT 1.1 between 300 and 823 K to date for all previously reported n- and p-type PbSe-based materials as well as tellurium-free n-type polycrystalline materials. These even rival the highest reported values for n-type PbTe-based materials. Cu2Se doping not only enhance charge transport properties but also depress thermal conductivity of n-type PbSe. It flattens the edge of the conduction band of PbSe, increases the effective mass of charge carriers, and enlarges the energy band gap, which collectively improve the Seebeck coefficient markedly. This is the first example of manipulating the electronic conduction band to enhance the thermoelectric properties of n-type PbSe. Concurrently, Cu2Se increases the carrier concentration with nearly no loss in carrier mobility, even increasing the electrical conductivity above ∼423 K. The resulting power factor is ultrahigh, reaching ∼21–26 μW cm–1 K–2 over a wide range of temperature from ∼423 to 723 K. Cu2Se doping substantially reduces the lattice thermal conductivity to ∼0.4 W m–1 K–1 at 773 K, approaching its theoretical amorphous limit. According to first-principles calculations, the achieved ultralow value can be attributed to remarkable acoustic phonon softening at the low-frequency region.
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Yu, Yuan
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Lee, Yong Kyu
|0 P:(DE-Juel1)161289
|b 2
700 1 _ |a Cojocaru-Mirédin, Oana
|0 0000-0001-6543-203X
|b 3
700 1 _ |a Yoo, Byeongjun
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Cho, Sung-Pyo
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Im, Jino
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Wuttig, Matthias
|0 P:(DE-Juel1)176716
|b 7
700 1 _ |a Hyeon, Taeghwan
|0 0000-0001-5959-6257
|b 8
700 1 _ |a Chung, In
|0 0000-0001-6274-3369
|b 9
|e Corresponding author
773 _ _ |a 10.1021/jacs.8b10448
|g Vol. 140, no. 45, p. 15535 - 15545
|0 PERI:(DE-600)1472210-0
|n 45
|p 15535 - 15545
|t Journal of the American Chemical Society
|v 140
|y 2018
|x 1520-5126
856 4 _ |u https://juser.fz-juelich.de/record/867957/files/jacs.8b10448.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/867957/files/jacs.8b10448.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:867957
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)176716
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J AM CHEM SOC : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b J AM CHEM SOC : 2017
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-10-20170113
|k PGI-10
|l JARA Institut Green IT
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-10-20170113
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21