000867960 001__ 867960
000867960 005__ 20210130003958.0
000867960 0247_ $$2doi$$a10.1002/pssr.201800577
000867960 0247_ $$2ISSN$$a1862-6254
000867960 0247_ $$2ISSN$$a1862-6270
000867960 0247_ $$2altmetric$$aaltmetric:44750710
000867960 0247_ $$2WOS$$aWOS:000465029000003
000867960 037__ $$aFZJ-2019-06553
000867960 082__ $$a530
000867960 1001_ $$00000-0003-4992-7037$$aHollermann, Henning$$b0
000867960 245__ $$aStoichiometry Determination of Chalcogenide Superlattices by Means of X‐Ray Diffraction and its Limits
000867960 260__ $$aWeinheim$$bWiley-VCH$$c2019
000867960 3367_ $$2DRIVER$$aarticle
000867960 3367_ $$2DataCite$$aOutput Types/Journal article
000867960 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1576574094_1171
000867960 3367_ $$2BibTeX$$aARTICLE
000867960 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000867960 3367_ $$00$$2EndNote$$aJournal Article
000867960 520__ $$aIn this paper, the potential of stoichiometry determination for chalcogenide superlattices, promising candidates for next‐generation phase‐change memory, via X‐ray diffraction is explored. To this end, a set of epitaxial GeTe/Sb2Te3 superlattice samples with varying layer thicknesses is sputter deposited. Kinematical scattering theory is employed to link the average composition with the diffraction features. The observed lattice constants of the superlattice reference unit cell follow Vegard's law, enabling a straight‐forward and non‐destructive stoichiometry determination. 
000867960 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000867960 588__ $$aDataset connected to CrossRef
000867960 7001_ $$0P:(DE-HGF)0$$aLange, Felix R. L.$$b1
000867960 7001_ $$0P:(DE-HGF)0$$aJakobs, Stefan$$b2
000867960 7001_ $$0P:(DE-HGF)0$$aKerres, Peter$$b3
000867960 7001_ $$0P:(DE-Juel1)176716$$aWuttig, Matthias$$b4$$eCorresponding author
000867960 773__ $$0PERI:(DE-600)2259465-6$$a10.1002/pssr.201800577$$gVol. 13, no. 4, p. 1800577 -$$n4$$p1800577 -$$tPhysica status solidi / Rapid research letters Rapid research letters [...]$$v13$$x1862-6270$$y2019
000867960 8564_ $$uhttps://juser.fz-juelich.de/record/867960/files/pssr.201800577.pdf$$yRestricted
000867960 8564_ $$uhttps://juser.fz-juelich.de/record/867960/files/pssr.201800577.pdf?subformat=pdfa$$xpdfa$$yRestricted
000867960 909CO $$ooai:juser.fz-juelich.de:867960$$pVDB
000867960 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176716$$aForschungszentrum Jülich$$b4$$kFZJ
000867960 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000867960 9141_ $$y2019
000867960 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000867960 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000867960 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS STATUS SOLIDI-R : 2017
000867960 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000867960 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000867960 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000867960 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000867960 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000867960 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000867960 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000867960 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000867960 920__ $$lyes
000867960 9201_ $$0I:(DE-Juel1)PGI-10-20170113$$kPGI-10$$lJARA Institut Green IT$$x0
000867960 980__ $$ajournal
000867960 980__ $$aVDB
000867960 980__ $$aI:(DE-Juel1)PGI-10-20170113
000867960 980__ $$aUNRESTRICTED