000867961 001__ 867961
000867961 005__ 20210130003959.0
000867961 0247_ $$2doi$$a10.1002/adma.201900784
000867961 0247_ $$2ISSN$$a0935-9648
000867961 0247_ $$2ISSN$$a1521-4095
000867961 0247_ $$2Handle$$a2128/23635
000867961 0247_ $$2altmetric$$aaltmetric:65564502
000867961 0247_ $$2pmid$$apmid:31385632
000867961 0247_ $$2WOS$$aWOS:000479612900001
000867961 037__ $$aFZJ-2019-06554
000867961 082__ $$a660
000867961 1001_ $$0P:(DE-HGF)0$$aPries, Julian$$b0
000867961 245__ $$aSwitching between Crystallization from the Glassy and the Undercooled Liquid Phase in Phase Change Material Ge 2 Sb 2 Te 5
000867961 260__ $$aWeinheim$$bWiley-VCH$$c2019
000867961 3367_ $$2DRIVER$$aarticle
000867961 3367_ $$2DataCite$$aOutput Types/Journal article
000867961 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1576576029_1171
000867961 3367_ $$2BibTeX$$aARTICLE
000867961 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000867961 3367_ $$00$$2EndNote$$aJournal Article
000867961 520__ $$aControlling crystallization kinetics is key to overcome the temperature–time dilemma in phase change materials employed for data storage. While the amorphous phase must be preserved for more than 10 years at slightly above room temperature to ensure data integrity, it has to crystallize on a timescale of several nanoseconds following a moderate temperature increase to near 2/3 Tm to compete with other memory devices such as dynamic random access memory (DRAM). Here, a calorimetric demonstration that this striking variation in kinetics involves crystallization occurring either from the glassy or from the undercooled liquid state is provided. Measurements of crystallization kinetics of Ge2Sb2Te5 with heating rates spanning over six orders of magnitude reveal a fourfold decrease in Kissinger activation energy for crystallization upon the glass transition. This enables rapid crystallization above the glass transition temperature Tg. Moreover, highly unusual for glass‐forming systems, crystallization at conventional heating rates is observed more than 50 °C below Tg, where the atomic mobility should be vanishingly small.
000867961 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000867961 588__ $$aDataset connected to CrossRef
000867961 7001_ $$0P:(DE-HGF)0$$aWei, Shuai$$b1
000867961 7001_ $$0P:(DE-Juel1)176716$$aWuttig, Matthias$$b2$$eCorresponding author
000867961 7001_ $$0P:(DE-HGF)0$$aLucas, Pierre$$b3
000867961 773__ $$0PERI:(DE-600)1474949-x$$a10.1002/adma.201900784$$gVol. 31, no. 39, p. 1900784 -$$n39$$p1900784 -$$tAdvanced materials$$v31$$x1521-4095$$y2019
000867961 8564_ $$uhttps://juser.fz-juelich.de/record/867961/files/Pries_et_al-2019-Advanced_Materials.pdf$$yOpenAccess
000867961 8564_ $$uhttps://juser.fz-juelich.de/record/867961/files/Pries_et_al-2019-Advanced_Materials.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000867961 909CO $$ooai:juser.fz-juelich.de:867961$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000867961 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176716$$aForschungszentrum Jülich$$b2$$kFZJ
000867961 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000867961 9141_ $$y2019
000867961 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000867961 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000867961 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000867961 915__ $$0StatID:(DE-HGF)9920$$2StatID$$aIF >= 20$$bADV MATER : 2017
000867961 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV MATER : 2017
000867961 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000867961 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000867961 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000867961 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000867961 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000867961 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000867961 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000867961 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000867961 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000867961 920__ $$lyes
000867961 9201_ $$0I:(DE-Juel1)PGI-10-20170113$$kPGI-10$$lJARA Institut Green IT$$x0
000867961 980__ $$ajournal
000867961 980__ $$aVDB
000867961 980__ $$aUNRESTRICTED
000867961 980__ $$aI:(DE-Juel1)PGI-10-20170113
000867961 9801_ $$aFullTexts