000867964 001__ 867964
000867964 005__ 20210130004000.0
000867964 0247_ $$2doi$$a10.3390/lubricants7100090
000867964 0247_ $$2Handle$$a2128/23634
000867964 0247_ $$2altmetric$$aaltmetric:68795447
000867964 0247_ $$2WOS$$aWOS:000494477000009
000867964 037__ $$aFZJ-2019-06557
000867964 082__ $$a530
000867964 1001_ $$0P:(DE-Juel1)178036$$aTiwari, Avinash$$b0$$ufzj
000867964 245__ $$aContact Mechanics for Solids with Randomly Rough Surfaces and Plasticity
000867964 260__ $$aBasel$$bMDPI$$c2019
000867964 3367_ $$2DRIVER$$aarticle
000867964 3367_ $$2DataCite$$aOutput Types/Journal article
000867964 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1576575756_476
000867964 3367_ $$2BibTeX$$aARTICLE
000867964 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000867964 3367_ $$00$$2EndNote$$aJournal Article
000867964 520__ $$aWe present experimental results for the elastic and plastic deformation of sandblasted polymer balls resulting from contacts with flat smooth steel and silica glass surfaces. Nearly symmetric, Gaussian-like height probability distributions were observed experimentally before and remarkably, also after the polymer balls were deformed plastically. For all the polymers studied we find that the surface roughness power spectra for large wavenumbers (short length scales) are nearly unchanged after squeezing the polymer balls against flat surfaces. We attribute this to non-uniform plastic flow processes at the micrometer length scale. The experimental data are analyzed using the Persson contact mechanics theory with plasticity and with finite-element method (FEM) calculations
000867964 536__ $$0G:(DE-HGF)POF3-141$$a141 - Controlling Electron Charge-Based Phenomena (POF3-141)$$cPOF3-141$$fPOF III$$x0
000867964 588__ $$aDataset connected to CrossRef
000867964 7001_ $$0P:(DE-HGF)0$$aWang, Anle$$b1
000867964 7001_ $$0P:(DE-Juel1)144442$$aMüser, Martin H.$$b2
000867964 7001_ $$0P:(DE-Juel1)130885$$aPersson, Bo$$b3$$eCorresponding author$$ufzj
000867964 773__ $$0PERI:(DE-600)2704327-7$$a10.3390/lubricants7100090$$gVol. 7, no. 10, p. 90 -$$n10$$p90$$tLubricants$$v7$$x2075-4442$$y2019
000867964 8564_ $$uhttps://juser.fz-juelich.de/record/867964/files/lubricants-07-00090.pdf$$yOpenAccess
000867964 8564_ $$uhttps://juser.fz-juelich.de/record/867964/files/lubricants-07-00090.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000867964 909CO $$ooai:juser.fz-juelich.de:867964$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000867964 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178036$$aForschungszentrum Jülich$$b0$$kFZJ
000867964 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130885$$aForschungszentrum Jülich$$b3$$kFZJ
000867964 9131_ $$0G:(DE-HGF)POF3-141$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000867964 9141_ $$y2019
000867964 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000867964 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000867964 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000867964 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index
000867964 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000867964 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000867964 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000867964 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review
000867964 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000867964 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000867964 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000867964 980__ $$ajournal
000867964 980__ $$aVDB
000867964 980__ $$aUNRESTRICTED
000867964 980__ $$aI:(DE-Juel1)IAS-1-20090406
000867964 980__ $$aI:(DE-Juel1)PGI-1-20110106
000867964 9801_ $$aFullTexts