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Abstract: We study the linear and nonlinear viscoelastic properties of two tire tread compounds.
We discuss the difference in nonlinear response between the oscillatory tensile and shear modes. We also
analyze strain relaxation (creep) data for the same systems. We discuss what type of measurements are
most suitable for obtaining the viscoelastic modulus used in rubber friction calculations.
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1. Introduction

Most practical applications of rubber materials involve large deformations, with strain in the
range of 0.1–1. Rubber with filler particles is a highly nonlinear material, where the effective elastic
modulus typically decreases by a factor of ≈10 with increasing strain from less 10−4 to 1. Most of
the drop occurs already for a very small strain, typically below 0.1. The strong dependence on the
strain amplitude is due to the breakup of the filler network [1–13]. That is, in the undeformed state,
if the filler particle (volume) fraction is larger than ≈0.3, they form a percolating network in the rubber
matrix. During deformation with large enough strain, this network is broken up, resulting in a strong
reduction in the effective elastic modulus. This break up of the filler network with an increasing strain
amplitude is also associated with a large increase in the dissipative response of the rubber compound.

An interesting idea for the low-strain extensional reinforcement of elastomers was proposed by
Smith et al. [12]. They proposed that the reinforcement results from a nanoparticulate jamming-induced
suppression in the composite Poisson ratio. This suppression forces an increase in rubber volume
with extensional deformation, effectively converting a portion of the rubber’s bulk modulus into an
extensional modulus.

There are different ways to probe the nonlinear viscoelastic properties of rubber materials,
and here we compare the results of measurements using oscillatory strain in tension and shear
modes. We also compare these results with the effective modulus obtained from strain relaxation
(creep) measurements. We discuss what type of measurements are most suitable for obtaining the
viscoelastic modulus for rubber friction calculations.

In Section 2 we review the theory of nonlinear response. In Section 3 we present the experimental
methods used here, and in Section 4, our experimental results. Section 5 contains a discussion and
Section 6 the summary and conclusion.
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2. Theory

The nonlinear response theory shows that the relation between stress σ(t) and strain ε(t) during
elongation or shear can be written as [14]

σ(t) =
∫

dt1 E1(t− t1)ε(t1) +
∫

dt1dt2 E2(t− t1, t− t2)ε(t1)ε(t2)

+
∫

dt1dt2dt3 E3(t− t1, t− t2, t− t3)ε(t1)ε(t2)ε(t3) + ... ,
(1)

where causality requires that the response function E1 is nonzero only when t1 < t, E2 is nonzero only
when t1 < t and t2 < t, and so on.

For elongation of a rectangular strip (elongation force F(t)) with (undeformed) cross section A0

and length L0, and if σ(t) is the engineering stress F(t)/A0 then ε(t) in Equation (1) is conveniently
chosen as the linear strain [L(t)− L0]/L0, while if σ(t) = F(t)/A(t) is the physical (or true) stress
then ε(t) is conveniently chosen as the logarithmic strain ln[L(t)/L0]: consider elongating a rubber
strip with the original cross section A0 and length L0. If σ(t) denote the engineering stress then the
elongation force F(t) = σ(t)A0 and the work to elongate is U =

∫
F(t)dL =

∫
σ(t)A0L0dL/L0 =

V0
∫

σ(t)ε̇(t)dt where ε(t) = [L(t) − L0]/L0 is the linear strain and V0 the rubber volume. If σ(t)
denote the physical stress then F(t) = σ(t)A(t) so that U =

∫
σ(t)A(t)dL =

∫
σ(t)A(t)L(t)dL/L(t) =

V0
∫

σ(t)ε̇(t)dt where ε(t) = ln[L(t)/L0] is the logarithmic strain. Here we have assumed that there is
no change in the volume during the deformation i.e., V0 = A(t)L(t) = A0L0. For small strain, as is
well known, the logarithmic strain reduces to the linear strain.

There are various ways to study the nonlinear viscoelastic properties of rubber materials. One of
the standard methods is to apply oscillatory strain, and gradual increasing of the strain amplitude.
If the strain is given by ε = ε0cos(ωt) then the sum in Equation (1) will have the form

σ(t) = Re
[
Z0(ω, ε0) + Z1(ω, ε0)eiωt + Z2(ω, ε0)ei2ωt + ...

]
ε0,

where Zn(ω, ε0) (n = 0, 1, 2, ...) are complex valued functions of the frequency ω and the strain
amplitude ε0. For example,

Z0 =
1
2

ε0

∫ ∞

0
dt1dt2 E2(t1, t2)eiω(t1−t2) + ...

Z1 =
∫ ∞

0
dt1 E1(t1)eiωt1 +

1
4

ε2
0

∫ ∞

0
dt1dt2dt3 E3(t1, t2, t3)

×
[
eiω(t1+t2+t3) + eiω(t1−t2+t3) + eiω(t1−t2−t3)

]
+ ...

Note that when ε0 → 0 only the Z1 term will be non-zero. If we write Z0 = |Z0|exp(iφ0),
Z1 = |Z1|exp(iφ1), ... we can also write

σ(t) =
[
|Z0|cosφ0 + |Z1|cos(ωt + φ1) + |Z2|cos(2ωt + φ2) + ...

]
ε0.

The dynamical mechanical analysis (DMA) instruments that we use give as the output the effective
Young’s modulus E(ω, ε0) (or shear modulus) obtained from the stress component which oscillates
with the same frequency as the (driving) strain, i.e.,

E(ω, ε0) = Z1(ω, ε0),

which depends on the strain amplitude ε0. For small strain amplitude, where the rubber responds
linearly to the applied strain, Z1(ω, ε0) is independent of the strain amplitude and equal to the
(viscoelastic) linear response function E(ω).
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We notice that the energy dissipation for one cycle of oscillating strain depends only on the
response function Z1(ω, ε0). This follows from the expression for the energy dissipation (per unit
volume and for one period of oscillation) in response to the oscillating strain ε(t) = ε0cos(ωt):

U =
∫ T

0
dt σ(t)ε̇(t) = Re

∫ T

0
dt σ(t)ε0(−iω)e−iωt

=
1
2

ωε2
0 Im

∫ T

0
dt
(

Z1eiωt + Z∗1 e−iωt
)

e−iωt

=
ωT
2

ε2
0 ImZ1 = πε2

0 ImE(ω, ε0)

(2)

Here we have used that Zneinωt for n 6= 1 will give a vanishing contribution to the dissipated energy
since the integrand in (2) will have the time dependency ei(n±1)ωt which will vanish when integrated
over one period of the oscillating strain.

The quantity E(ω, ε0) is very important since it reduces to the (linear response) viscoelastic
modulus E(ω) as ε0 → 0, and it determines the dissipated energy (in response to the oscillatory strain
ε(t) = ε0cos(ωt)) even in the nonlinear region. We also notice that for filled rubber compounds, the
response to the harmonic drive ε(t) = ε0cos(ωt) is often a nearly perfectly sinusoidal stress response,
i.e., it lacks higher-order harmonics [15]. Still, E(ω, ε0) depends on the strain amplitude ε0 and the
viscoelastic modulus can be written approximately as

ReE(ω, ε0) ≈ f (ε0)ReE(ω),

ImE(ω, ε0) ≈ g(ε0)ImE(ω),

where f (ε0) and g(ε0) are two different function with f (0) = g(0) = 1. Note that if f (ε0) = g(ε0) then
E(ω, ε0) would obey the Kramers–Kronig relation (see below), but it was shown in [16] that this is not
the case. The fact that the harmonic drive results in a nearly perfectly sinusoidal response has been
denoted as the “harmonic paradox”.

The presence of two different functions f and g in the expression for E(ω, ε0) indicates that the
deformation of filled rubber involves some new channel of energy dissipation, different from that
involving the rubber matrix. This new dissipation channel may involve slip of polymer chains on the
surface of filler particles, or some rearrangement of polymer chains when filler particle are separated
from each other when the filler network breaks up during the deformation of the rubber. We noticed
that f and g depend on temperature in a different way from that of the rubber matrix.

Another experimental approach to study the viscoelastic response of polymers is stress or strain
relaxation. In these experiments, at time t = 0 a constant stress is applied (strain relaxation or creep),
or a constant displacement (strain) is imposed (stress relaxation). This will result in a strain which
increases with increasing time, or to stress, which decreases with time. For example, if ε(t) = ε0θ(t)
(stress relaxation), where θ(t) is a step function, we get from Equation (1)

σ(t) =
∫ ∞

0 dt1 E1(t− t1)ε0 +
∫ ∞

0 dt1dt2 E2(t− t1, t− t2)ε
2
0

+
∫ ∞

0 dt1dt2dt3 E3(t− t1, t− t2, t− t3)ε
3
0 + ...

(3)

We can write this equation as
σ(t) = Eσ(t, ε0)ε0.

In the linear response region, the stress relaxation modulus Eσ(t) = Eσ(t, ε0 = 0) and the modulus
E(ω) = E(ω, ε0 = 0) contain exactly the same information. At first this may seem surprising since
E(ω) is a complex function, and, therefore, consists of two real functions, while E(t) is a single real
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function. However, due to causality the real and imaginary part of E(ω) (as well for any other linear
response function) satisfies the Kramers–Kronig relation, which in the present case takes the form

ReE(ω) = E(∞) +
2
π

P
∫ ∞

0
dω′

ω′ImE(ω′)
ω′2 −ω2 , (4)

where E(∞) equals E(ω) as ω → ∞, and where P stands for principal value. Therefore, given ImE(ω)

we can calculate ReE(ω), i.e., there is only one independent function.
In the linear response limit, the relation between E(ω) and Eσ(t) is easy to derive: If the strain is

abruptly increased (at time t = 0) from zero to ε0 then

ε(ω) =
∫ ∞

0
dt ε0eiωt−0+t =

iε0

ω + i0+
,

where 0+ is an infinitesimal small positive number. In this case, the stress at time t > 0 will be:

σ(t) =
1

2π

∫
dω E(ω)ε(ω)e−iωt =

1
2π

∫
dω E(ω)

iε0

ω + i0+
e−iωt.

Comparing this to the definition σ(t) = Eσ(t)ε0 gives

Eσ(t) = −
1

2πi

∫
dω E(ω)

1
ω + i0+

e−iωt (5).

Here we note that causality requires that E(ω) can be represented using the following spectral
decomposition (Prony series)

E(ω) = E(∞)−
∫ ∞

0
dτ

Hσ(τ)

1− iωτ
, (6)

where Hσ(τ) is a real (and positive) function of relaxation time τ. Substituting this into Equation (5) gives

Eσ(t) = E(∞)−
∫ ∞

0
dτHσ(τ)

(
1− e−t/τ

)
(7).

In the case where ε0 is so large that the response is nonlinear, one cannot use Equation (5) to
relate E(ω, ε0) to Eσ(t, ε0). However, it appears that it is still possible to write Eσ(t, ε0) in the form of
Equation (7), where Hσ now depends on ε0 and then use Equation (6) to obtain an effective modulus
which we denote as Eσ(ω, ε0).

In a strain relaxation (creep) experiment, at t = 0 a constant stress σ0 is applied and the time
dependent strain ε(t) is measured. To describe this one can introduce the strain relaxation modulus via

ε(t) = E−1
ε (t, σ0)σ0.

In the linear response limit Eε(t) = Eε(t, σ0 = 0) can be obtained from E(ω) by using that

σ(ω) =
iσ0

ω + i0+
.

Thus for t > 0:

ε(t) =
1

2π

∫
dω

σ(ω)

E(ω)
e−iωt =

1
2π

∫
dω

1
E(ω)

iσ0

ω + i0+
e−iωt.

Comparing this to the definition ε(t) = E−1
ε (t)σ0 gives

1
Eε(t)

= − 1
2πi

∫
dω

1
E(ω)

1
ω + i0+

e−iωt. (8)
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Here we note that causality requires that E−1(ω) can be represented using the following spectral
decomposition (Prony series)

1
E(ω)

=
1

E(∞)
+
∫ ∞

0
dτ

Hε(τ)

1− iωτ
, (9)

where Hε(τ) is a real and positive. Substituting this into Equation (8) gives

1
Eε(t)

=
1

E(∞)
+
∫ ∞

0
dτHε(τ)

(
1− e−t/τ

)
(10).

In the case where σ0 is so large that the response is nonlinear one cannot use Equation (8) to relate
E(ω, ε0) to Eε(t, ε0). However, it appears, that it is still possible to write Eε(t, ε0) on the form Equation
(10), where Hε now depends on σ0 and then use Equation (9) to obtain an effective modulus which we
denote as Eε(ω, ε0).

3. Experimental Procedure

We performed measurements of the linear and nonlinear properties of two rubber compounds
using the two experimental set-ups shown schematically in Figure 1. The first method was performed
in shear mode on the Metravib dynamical mechanical analysis (DMA) instrument. To obtain the
shear modulus G(ω, ε0) the upper plate in Figure 1a oscillates u(t) = u0cos(ωt) in a plane with the
frequency ω and strain amplitude ε0 = u0/h.

rectangular rubber 
strip, undeformed

cross section area A0

strain ε = (L-L0)/L0

F

F

L(t)

(a) (b)

ω

oscillatory shear,
strain ε = u/h

rubber

u(t)

h

Figure 1. (a) Method used to measure the shear modulus G(ω, ε0). The upper plate oscillates in a
plane with frequency ω and strain amplitude ε0. (b) Set-up used for measuring the strain relaxation
modulus Eε(t, σ0). The force F is applied at time t = 0 and the length of the rubber strip is measured as
a function of time.

The strain sweep was performed at different temperatures (T = −10, 0, 20, 60 and 100 ◦C), and
was carried out from shear strain 0.0001 to 1 at the frequency f = 10 Hz. For each temperature,
a new sample prepared from the same compound was used. Each sample was acclimatized in a DMA
chamber for 10 min to achieve the desired temperature.

The second (home-built) set-up (Figure 1b) was used for strain relaxation (creep) measurements.
At t = 0 the rubber strip was elongated with the applied force F. The length L(t) of the rubber strip
increased with time due to viscoelastic deformations (creep). Before applying the force F, the rubber
strip had a length L0 and a cross section area A0, and at time t the length and cross section area
were L(t) and A(t), respectively, where A0L0 ≈ A(t)L(t). We defined the effective Young’s modulus
Eε(t, σ0) so that σ(t) = Eε(t, σ0)ε(t) where the strain ε(t) = (L(t)− L0)/L0 and the (physical) stress
σ(t) = F/A(t) = (F/A0)(L(t)/L0) = (F/A0)(1 + ε(t)) = σ0(1 + ε(t)). Note that the physical stress
depends on time, therefore Eε(t, σ0) defined in this way is slightly different from the strain relaxation
modulus defined in Section 2.

We also performed measurements of the viscoelastic master curve and strain sweeps in oscillatory
tension mode using a Q800 DMA instrument produced by TA Instruments. In this case, we applied
the oscillatory strain ε(t) = ε1 + ε0cos(ωt), where the pre-strain ε1 was chosen to be ε1 = 1.25ε0 so
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that the rubber strip remained straight during the whole oscillation cycle. For the master curve, we
used very small strain amplitude, ε0 = 0.0004, and in this case we are in the linear response region,
where the modulus E(ω) is independent on the strain amplitude (and the pre-strain). However, the
strain sweep does depend on the pre-strain so we cannot expect exactly the same results as in the
shear mode where no pre-strain applied. Since the pre-strain contributes to the break-up of the filler
network, and since the pre-strain increases in proportion to the dynamic strain amplitude, we expect
faster strain softening with increasing strain amplitude for the strain sweep in tension compared to in
shear mode. In addition, the shear strain ε = u/h is not the same quantity as the strain in elongation
ε = (L− L0)/L0; usually the shear strain is denoted by γ rather than ε, but here we use the same
notation for both quantities.

4. Experimental Results

Here we will present results for the linear and nonlinear response of two tire tread rubber
compounds. Rubber compound A is a summer tire tread compound while the other compound C is a
winter tread compound. Both compounds have a silica filler. The glass transition temperature, here
defined as the temperature T where tanδ(T) is maximal when studied at the frequency ω = 0.01 s−1,
are Tg = −30.4 ◦C and −47.2 ◦C for compound A and C, respectively.

We measured the linear response of viscoelastic modulus in oscillatory strain (see Figure 2a)
with a very small strain amplitude, 0.0004 and a pre-strain 0.0005. The measurements was done at
several frequencies between 0.1 Hz and 100 Hz, and for many temperatures. The measured frequency
segments were shifted to obtain a smooth master curve (see Ref. [16] for more details). In Figure 2a
the blue line is the master curve for compound A. The results of fitting the Prony series (Equation (6))
are also shown, where the spectral weight H(τ) is shown in Figure 2b. Clearly, both the real and
imaginary part of the viscoelastic modulus can be fitted very well with the Prony series. This shows
that the real and imaginary parts of the viscoelastic modulus obey the Kramers Kronig relation,
as indeed expected, because of the small strain used in the measurements of viscoelastic modulus
(linear response). However, when the effective modulus is measured at a higher strain the Prony series
can no longer fit the measured data (not shown), as already shown in Ref. [16].

We measured the nonlinear viscoelastic response using strain sweeps in oscillatory tension and
shear modes. In Figure 3 we show (a) the ratio ReG(ε)/ReG(0) (red line) and ReE(ε)/ReE(0) (blue
line) as a function of the logarithm of the strain, and in (b) the same for the imaginary part of G and E.
To measure the effective Young’s modulus E the rubber strip is pre-strained with an amplitude which
is 25% larger than the dynamical strain amplitude, i.e., pre-strain = 1.25ε0 if the dynamical strain is
ε(t) = ε0cos(ωt). This pre-strain increases with increasing amplitude of dynamical strain and may be
the main reason why the strain softening occurs at smaller strain for the effective E-modulus than for
the G-modulus. Note also that the strain in shear mode is defined differently than in tension.
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Figure 2. (a) The real and imaginary parts of the (linear response) viscoelastic modulus E(ω) of rubber
compound A as a function of the frequency (log-log scale). The blue line is the measured data shifted to
form a smooth master curve. The green line is the fit using the Prony series Equation (6) in the discrete
form E(ω) = E(∞)−∑n Hn/(1− iωτn) where we chose 60 relaxation times τn uniformly distributed
on a logarithmic time scale. (b) Spectral weight function Hn as a function of τn. Note that the logarithm
of dimensional quantities like time log10τ (s) really means log10(τ/τ0) where τ0 = 1 s.
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Figure 3. (a) The ratio ReG(ε)/ReG(0) (red line) and ReE(ε)/ReE(0) (blue line) as a function of the
logarithm of the strain ε. (b) The same for the imaginary part of G and E. Both pictures are shown
for the temperatures T = 20 ◦C and the frequency f = 10 Hz. For the measurement of the effective
Young’s modulus E the rubber strip is pre-strained with an amplitude which is 25% larger than the
dynamical strain amplitude, i.e., pre-strain = 1.25ε0 if the dynamical strain is ε(t) = ε0cos(ωt).
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In Figure 4 we show the results obtained in shear for the ratio (a) ReG(ε)/ReG(0) and (b)
[ImG(ε)/ReG(ε)]/[ImG(0)/ReG(0)] for the compound A. Note in (a) the strain softening which is
strongest at the lowest temperature. Figure 4b shows that the energy dissipation is enhanced when the
filler network is broken. Note also that the peak in [ImG(ε)/ReG(ε)]/[ImG(0)/ReG(0)] is the highest
for T = 20 ◦C.

We also performed strain relaxation (creep) experiments. The red and blue lines in Figure 5 show
the measured results for compounds C and A, respectively. Note that for short times, the strain is
ε ≈ 0.24 for compound A and ε ≈ 0.21 for compound C.
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Figure 4. (a) The ratio of the real part of the shear modulus G(ε) for the strain ε and for vanishing
strain (or actually ε = 0.0001). (b) The ratio between ImG(ε)/ReG(ε) for the strain ε and the same
quantity for vanishing strain. Results are shown for the temperatures T = −10, 0, 20, 60 and 100 ◦C.
The shear modulus is measured in oscillatory mode at the frequency f = 10 Hz.
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Figure 5. The dependency of the strain on time. At time t = 0, a force F = 35.6 N is applied to a rubber
strip with the (undeformed) cross section A0 = 30.5 mm2. The red and blue lines are the measurement
results for compounds C and A, respectively.
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Figure 6 shows the time-dependence of the (nonlinear) strain relaxation modulus Eε(t, σ0), as
obtained from the experimental data in Figure 5 using Eε = σ0/ε(t) (or rather Eε = σ(t)/ε(t) where
σ(t) is the physical stress). The green lines are the fitted curves using the fit function in the form (10).

Now we will show that if we calculate the complex frequency-dependent modulus Eε(ω, σ0)

from (9) using the Hε(τ), obtained by fitting Eε(t, σ0) to the form (10) (green lines in Figure 6), then this
does not agree with the result E(ω, σ0), obtained from the direct DMA measurement using oscillatory
shear strain.

The blue lines in Figure 7 show the real part of the small-strain (0.0004) viscoelastic modulus
E(ω) as a function of frequency for compound A (a) and C (b). The red lines were obtained from
the measured (non-linear) shear modulus assuming E = 3G and the strain amplitude ε0 = 0.24 in
(a) and ε0 = 0.21 in (b). (Note: we preferred to use the effective modulus obtained using E = 3G
rather than the one measured directly in the oscillatory tension mode, since strain relaxation (creep)
does not have a pre-strain so it is best to compare it with the effective modulus obtained from the
shear modulus.) Also shown (green lines) are the real parts of the modulus for compounds A and C
as obtained from the strain relaxation measurements using (9) with Hε(τ, ε0), obtained as described
above, from fitting the strain relaxation data to the fit function in the form (10). In this case, the
agreement between the two different procedures for obtaining the nonlinear function ReE(ω, ε0) is
quite good. However, for the imaginary part ImE(ω, ε0), the two procedures give very different results.
This is shown in Figure 8. Clearly, the direct measurement of E(ω, ε0) using oscillatory strain gives
much higher energy dissipation than that obtained from the strain relaxation data. Note that for small
strains, in the linear response region, both procedures give the same result for ReE(ω) and ImE(ω).
This difference between the linear and non-linear case is due to the fact that in the non-linear region
the Kramers–Kronig relation is not valid, and the non-linear E-modulus, as defined above, cannot be
represented in the form of Equations (6) or (9).

 3

 4

 5
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 7

 0  1  2  3  4  5

compound A
compound C
fit function

log10 t  (s)

E
ε
(t

,σ
0
) 

 (
M

P
a
) 

Figure 6. Dependence of the (nonlinear) strain relaxation modulus Eε(t, σ0) = σ(t)/ε(t) on the time
obtained from the data in Figure 5. The red and blue lines are the measurement results for compounds
C and A, respectively, and the green lines the fitted curves using the fit function (10).
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5. Discussion

For rubber friction studies, where the viscoelastic properties of the rubber enter as an important
input, the strain can be very large and it is important to include non-linearity in the viscoelastic
response. However, in the analytical treatment of sliding friction, it is nearly impossible to include
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non-linearity in a completely rigorous way. One approach is to assume a linear relation between stress
and strain in the theoretical derivations, but instead of using the small strain modulus E(ω), use an
effective modulus E(ω, ε) for a typical strain ε involved in the problem of interest. For sliding friction
on the road surfaces ε ≈ 1, therefore, the information is needed on the non-linear response for very
large strains.

Now, which is the best experimental way to obtain the large strain modulus? It depends on the
application. In the linear response regime, all methods give the same result, so it does not matter
whether the modulus is measured in shear (gives G(ω) and E(ω) ≈ 3G(ω)) or tension (gives E(ω))
mode or during strain or stress relaxation (gives Eσ(t) or Eε(t), of which E(ω) can be obtained using
Equations (6) + (7) or Equations (9) + (10)). However, as shown above for large strain, all these methods
give different results.

For rubber friction on road surfaces, it is clear that a direct measurement of the viscoelastic
modulus in response to oscillating applied strain is the best approach since the pulsating deformations
acting on the rubber surface during sliding on the hard rough substrate surface (e.g., a road surface) are
similar to the oscillatory deformations in the DMA experiment. In addition, in this case, the dissipated
energy in response to strain oscillation is correctly described [see Equation (2)]. However, tensile
measurements require pre-strain which breaks-up the filler network, which will affect the effective
modulus. In rubber friction experiments, road asperities slide along the rubber surface and there is only
very little pre-strain. This suggests that the shear modulus (obtained without pre-strain) is probably
better than the modulus obtained in tension with pre-strain. An even better method was proposed in
Ref. [17] (see Appendix B in Ref. [17]). It involves rolling friction experiments (see Figure 9), where the
associated deformations are very similar to when the asperities slide over the rubber surface.

In some other applications the non-linear E-modulus, measured during strain (or stress) relaxation,
could be more suitable, e.g., to study the increase in contact area with time when a rubber block is
loaded against a rough surface at time t = 0 with a constant external load force (strain relaxation) or
constant applied compression (stress relaxation) [18,19].
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viscoelastic modulus for rubber friction calculations (see Ap-
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thickness of about 0.5 cm are attached (glued) to both steel
plates. Several (say, n) steel cylinders with a diameter of
about 2 mm are placed between the rubber sheets. The steel
blocks are squeezed together with the force FN, and the bot-
tom steel block moves with a velocity v parallel to the upper
steel block. The force on the upper steel block divided by the
number n of steel cylinders, and by a factor 2 (to take into
account two rubber sheets) determines the rolling friction be-
tween one cylinder and the substrate under load FN/n.

in tension with pre-strain. An even better method was
proposed in Ref. [25] (see Appendix B in Ref. [25]). It
involves rolling friction experiments (see Fig. 9), where
the associated deformations are very similar to when the
asperities slide over the rubber surface.

In some other applications the non-linear E-modulus,
measured during strain (or stress) relaxation, could be
more suitable, e.g., to study the increase in contact area
with time when a rubber block is loaded against a rough
surface at time t = 0 with a constant external load
force (strain relaxation) or constant applied compression
(stress relaxation)[26, 27].

Many ideas have been presented for the increase in
the low-strain rubber modulus when filler particles are
added to rubber. Here we suggest that it may be due
to a confinement effect as illustrated in fig. 10. It is
well known that if a rubber sheet is confined between
two rigid surfaces the effective Young’s modulus increases
due to the confinement. Thus, if the rubber sheet has the
thickness h and is confined between circular rigid surfaces
with radius R, then the effective Young’s modulus (Gent-
Lindley equation)[18] Eeff ≈ E(1 + 2S2) where S = R/2h.

The confinement of rubber between filler cluster re-
gions in rubber may have a similar effect on the low-strain
modulus as the rigid sheets in Fig. 10(a). This is illus-
trated with an extreme case in Fig. 10(c) and (d) where
rigid sheets are embedded in the rubber matrix. We note
that the sheets are under compression in the transverse
direction while they are under tension in the direction of
the applied stress. A filler particle cluster may be more
stable under compression than under tension. Thus, as
long as the applied stress is not too large the filler net-
work may be stable in the transverse direction, giving
a strong increase in the effective Young’s modulus due

Figure 9. Proposed experimental set-up for determining the viscoelastic modulus for rubber friction
calculations (see Appendix B in Ref. [17] for details). Rubber sheets with a thickness of about 0.5 cm
are attached (glued) to both steel plates. Several (say, n) steel cylinders with a diameter of about 2 mm
are placed between the rubber sheets. The steel blocks are squeezed together with the force FN, and the
bottom steel block moves with a velocity v parallel to the upper steel block. The force on the upper steel
block divided by the number n of steel cylinders, and by a factor 2 (to take into account two rubber
sheets) determines the rolling friction between one cylinder and the substrate under load FN/n.

Many ideas have been presented for the increase in the low-strain rubber modulus when filler
particles are added to rubber. Here we suggest that it may be due to a confinement effect as illustrated
in Figure 10. It is well known that if a rubber sheet is confined between two rigid surfaces, the effective
Young’s modulus increases due to the confinement. Thus, if the rubber sheet has the thickness h
and is confined between circular rigid surfaces with radius R, then the effective Young’s modulus
(Gent–Lindley equation) [20] Eeff ≈ E(1 + 2S2) where S = R/2h.
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Figure 10. (a) Rubber slab (green) (thickness h) confined (glued) between two rigid circular sheets with
radius R. An applied stress σ gives a displacement (longitudinal strain) which is smaller than expected
from the rubber bulk Young’s modulus E, corresponding to an effective modulus Eeff ≈ E(1 + 2S2)

where S = h/2R. (b) Experiments [21,22] have shown that during elongation displacement in
the confined state (a) cavitation occur between filler particle aggregates (black), as expected from
the Gent–Lindley confinement effect (schematic). (c) The filler network (black) form a percolating
cluster in a rubber matrix (green). (d) During elongation the cluster may break up in the elongation
direction but in the transverse direction it is under compression and may survive to larger strain.
The effective Young’s modulus of the composite is increased because of the confinement of the rubber
in parallel sheets.

The confinement of rubber between filler cluster regions in rubber may have a similar effect
on the low-strain modulus as the rigid sheets in Figure 10a. This is illustrated with an extreme
case in Figure 10c,d where rigid sheets are embedded in the rubber matrix. We note that the sheets
are under compression in the transverse direction while they are under tension in the direction
of the applied stress. A filler particle cluster may be more stable under compression than under
tension. Thus, as long as the applied stress is not too large the filler network may be stable in the
transverse direction, giving a strong increase in the effective Young’s modulus due to the Gent–Lindley
confinement effect. This picture of the enhancement in the low-strain modulus is similar to the
suppression-in-the-composite-Poisson-ratio model proposed by Smith et al. [12].

The origin of the the enhancement in the low-strain modulus presented above is supported by
recent experimental results for the formation of cavities in filled rubbers when a rubber slab is exposed
to elongation. In this case it is observed [21,22] that cavitation start in regions between filler clusters
(see Figure 10b), as expected because of the Gent-Lindley confinement effect since the negative pressure
is highest in the central region between the cluster surfaces.

The strong drop in the effective modulus with increasing strain amplitude of filled rubber
compounds is also observed for other particle systems. Thus, the effective shear modulus of
(slightly) wet sand as a function of the strain amplitude is very similar to that of the filled rubber
compounds [23,24]; see Figure 11. For slightly wet sand, water capillary bridges bind the sand grains
together. Similarly, the filler particles in rubber interact with a weak attraction, of different physical
origin than for sand. Note that the drop in shear modulus for sand occurs over a similar range of strain
as for filled rubber compounds, and that the magnitude of the drop is similar. This strongly indicates
the same physical origin of both phenomena. Here we note that the formal theory has been developed
for granular materials which may also have implications for filled rubber compounds. This theory is
based on Edwards statistical mechanics for jammed granular matter, see Refs. [25,26]. One difference
is that for a granular material, such as sand, the thermal motion of the particles can be neglected, while
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the filler particles in rubber can be very small (of nanometer size) and in this case thermal motion
cannot be neglected. The exact theory of the viscoelastic properties of filled rubber compounds still
does not exist.

filler network rubber

(c) (d)

(a)

R

hrubber

σ

(b)

σ

cavity

FIG. 10: (a) Rubber slab (green) (thickness h) confined
(glued) between two rigid circular sheets with radius R. An
applied stress σ gives a displacement (longitudinal strain)
which is smaller than expected from the rubber bulk Young’s
modulus E, corresponding to an effective modulus Eeff ≈
E(1 + 2S2) where S = h/2R. (c) The filler network (black)
form a percolating cluster in a rubber matrix (green). (d)
During elongation the cluster may break up in the elongation
direction but in the transverse direction it is under compres-
sion and may survive to larger strain. The effective Young’s
modulus of the composite is increased because of the confine-
ment of the rubber in parallel sheets. (b) Experiments[19, 20]
have shown that during elongation displacement in the con-
fined state (a) cavitation occur between filler particle aggre-
gates (black), as expected from the Gent-Lindley confinement
effect (schematic).

to the Gent-Lindley confinement effect. This picture of
the enhancement in the low-strain modulus is similar
to the suppression-in-the-composite-Poisson-ratio model
proposed by Smith et al[12].

The origin of the the enhancement in the low-strain
modulus presented above is supported by recent experi-
mental results for the formation of cavities in filled rub-
bers when a rubber slab is exposed to elongation. In this
case it is observed[19, 20] that cavitation start in regions
between filler clusters (see Fig. 10(b)), as expected be-
cause of the Gent-Lindley confinement effect since the
negative pressure is highest in the central region between
the cluster surfaces.

The strong drop in the effective modulus with increas-
ing strain amplitude of filled rubber compounds is also
observed for other particle systems. Thus, the effective
shear modulus of (slightly) wet sand as a function of the
strain amplitude is very similar to that of the filled rub-
ber compounds[21, 22]; see Fig. 11. For slightly wet
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FIG. 11: Shear modulus of wet sand as a function of effective
strain amplitude. Courtesy of B. Weber and D. Bonn.

sand, water capillary bridges bind the sand grains to-
gether. Similarly, the filler particles in rubber interact
with a weak attraction, of different physical origin than
for sand. Note that the drop in shear modulus for sand
occurs over a similar range of strain as for filled rubber
compounds, and that the magnitude of the drop is sim-
ilar. This strongly indicates the same physical origin of
both phenomena. Here we note that the formal theory
has been developed for granular materials which may also
have implications for filled rubber compounds. This the-
ory is based on Edwards statistical mechanics for jammed
granular matter, see Ref. [24]. One difference is that for
a granular material, such as sand, the thermal motion of
the particles can be neglected, while the filler particles
in rubber can be very small (of nanometer size) and in
this case thermal motion cannot be neglected. The ex-
act theory of the viscoelastic properties of filled rubber
compounds still does not exist.

6 Summary and conclusion

We have studied the linear and nonlinear viscoelastic
properties of two tire tread compounds, and discussed
the difference in the non-linear response between oscil-
latory tensile and shear modes. We have also analyzed
strain relaxation data for the same systems. We have dis-
cussed which type of measurements is most suitable for
obtaining the viscoelastic modulus to be used in rubber
friction calculations.

Acknowledgments: We thank Avinash Tiwari for help
with the DMA measurements. We thank G. Hein-
rich for comments on the manuscript. This work was
performed within a Reinhart-Koselleck project funded
by the Deutsche Forschungsgemeinschaft (DFG). BNJP

Figure 11. Shear modulus of wet sand as a function of effective strain amplitude. Courtesy of B. Weber
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6. Summary and Conclusions

We have studied the linear and nonlinear viscoelastic properties of two tire tread compounds, and
discussed the difference in the non-linear response between oscillatory tensile and shear modes.
We have also analyzed strain relaxation data for the same systems. We have discussed which
type of measurements is most suitable for obtaining the viscoelastic modulus to be used in rubber
friction calculations.
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