000867999 001__ 867999
000867999 005__ 20240711085655.0
000867999 0247_ $$2doi$$a10.1016/j.memsci.2019.117704
000867999 0247_ $$2ISSN$$a0376-7388
000867999 0247_ $$2ISSN$$a1873-3123
000867999 0247_ $$2Handle$$a2128/23651
000867999 0247_ $$2WOS$$aWOS:000512677400026
000867999 037__ $$aFZJ-2019-06592
000867999 082__ $$a570
000867999 1001_ $$0P:(DE-Juel1)129660$$aSchulze-Küppers, F.$$b0$$ufzj
000867999 245__ $$aInfluence of support layer resistance on oxygen fluxes through asymmetric membranes based on perovskite-type oxides SrTi1-Fe O3-δ
000867999 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2020
000867999 3367_ $$2DRIVER$$aarticle
000867999 3367_ $$2DataCite$$aOutput Types/Journal article
000867999 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1576587643_618
000867999 3367_ $$2BibTeX$$aARTICLE
000867999 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000867999 3367_ $$00$$2EndNote$$aJournal Article
000867999 520__ $$aAsymmetric membranes of mixed ionic-electronic conducting perovskite-type oxides SrTi1-xFexO3-δ (STF, x = 0.3, 0.5 and 0.7) were prepared by inverse sequential tape-casting. Both porous support (~600 μm) and functional membrane layer (~20 μm) for a given membrane assembly were made from the same composition to ensure thermochemical compatibility between the layers. Oxygen fluxes were assessed in the range 650 -1020 °C, using either (non-pressurized) ambient air or pure oxygen as feed gas at the support side of the asymmetric membrane and argon as sweep gas. Notably, similar oxygen fluxes (~1.2 × 10−6 mol cm−2 s−1) are measured through the membranes of different compositions above 950 °C when using ambient air as feed gas. This observation is interpreted to reflect the major role of the support layer resistance in rate-limiting the oxygen fluxes through the STF asymmetric membranes, which conclusion is supported by comparison of the oxygen fluxes with those measured previously through asymmetric membranes of Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) and La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF). A simple diffusion-convection model is used to account for the observed gas phase polarization in the porous support layers limiting the oxygen fluxes.
000867999 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000867999 588__ $$aDataset connected to CrossRef
000867999 7001_ $$0P:(DE-Juel1)129587$$aBaumann, S.$$b1$$ufzj
000867999 7001_ $$0P:(DE-Juel1)129637$$aMeulenberg, W. A.$$b2$$ufzj
000867999 7001_ $$0P:(DE-HGF)0$$aBouwmeester, H. J. M.$$b3$$eCorresponding author
000867999 773__ $$0PERI:(DE-600)1491419-0$$a10.1016/j.memsci.2019.117704$$gVol. 596, p. 117704 -$$p117704 -$$tJournal of membrane science$$v596$$x0376-7388$$y2020
000867999 8564_ $$uhttps://juser.fz-juelich.de/record/867999/files/1-s2.0-S0376738819326250-main.pdf$$yOpenAccess
000867999 8564_ $$uhttps://juser.fz-juelich.de/record/867999/files/1-s2.0-S0376738819326250-main.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000867999 909CO $$ooai:juser.fz-juelich.de:867999$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000867999 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129660$$aForschungszentrum Jülich$$b0$$kFZJ
000867999 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129587$$aForschungszentrum Jülich$$b1$$kFZJ
000867999 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129637$$aForschungszentrum Jülich$$b2$$kFZJ
000867999 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000867999 9141_ $$y2020
000867999 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000867999 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000867999 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000867999 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000867999 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MEMBRANE SCI : 2017
000867999 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ MEMBRANE SCI : 2017
000867999 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000867999 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000867999 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000867999 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000867999 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000867999 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000867999 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000867999 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000867999 920__ $$lyes
000867999 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000867999 9801_ $$aFullTexts
000867999 980__ $$ajournal
000867999 980__ $$aVDB
000867999 980__ $$aUNRESTRICTED
000867999 980__ $$aI:(DE-Juel1)IEK-1-20101013
000867999 981__ $$aI:(DE-Juel1)IMD-2-20101013