001     868001
005     20250129092509.0
024 7 _ |a 10.1117/12.2526879
|2 doi
024 7 _ |a WOS:000511293300010
|2 WOS
037 _ _ |a FZJ-2019-06594
041 _ _ |a English
100 1 _ |a Kumar, Shashank
|0 P:(DE-Juel1)169828
|b 0
|e Corresponding author
|u fzj
111 2 _ |a Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XXI
|c San Diego
|d 2019-08-11 - 2019-08-15
|w United States
245 _ _ |a SiPM-based neutron detector design: validation of Geant4 simulations
260 _ _ |c 2019
|b SPIE
300 _ _ |a 1-7
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1585928350_29483
|2 PUB:(DE-HGF)
490 0 _ |v 11114
520 _ _ |a The demand for an alternative to 3He tubes in neutron detectors is growing. Specifically, the increase in challenging requirements for applications in research, industry, safety and homeland security triggered the search for better-suited detectors. Therefore, we developed a high performance, comparatively low-cost and easy to build cold neutron detector prototype (13.6 cm × 13.6 cm active area), employing digital silicon photomultipliers (SiPM) from Philips and a glass scintillator. The optical front end of the detector consists of a GS20 scintillator, enriched in 6Li, a light guide, SiPM arrays and an aluminum cap. In order to find the optimal front-end design, a series of Geant4 simulations were performed. In this work, we present a comparison between simulation results and measured validation data, considering the average number of photons detected and the maximum ratio (brightest pixel response divided by the sum of all pixel responses), for multiple design configurations.
536 _ _ |a 632 - Detector technology and systems (POF3-632)
|0 G:(DE-HGF)POF3-632
|c POF3-632
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef Conference
650 2 7 |a Instrument and Method Development
|0 V:(DE-MLZ)SciArea-220
|2 V:(DE-HGF)
|x 0
650 1 7 |a Instrument and Method Development
|0 V:(DE-MLZ)GC-2002-2016
|2 V:(DE-HGF)
|x 0
693 _ _ |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e TREFF: Neutronenreflektometer
|f NL5S
|1 EXP:(DE-MLZ)FRMII-20140101
|0 EXP:(DE-MLZ)TREFF-20140101
|5 EXP:(DE-MLZ)TREFF-20140101
|6 EXP:(DE-MLZ)NL5S-20140101
|x 0
700 1 _ |a Herzkamp, Matthias
|0 P:(DE-Juel1)156322
|b 1
|u fzj
700 1 _ |a van Waasen, Stefan
|0 P:(DE-Juel1)142562
|b 2
|u fzj
700 1 _ |a Burger, Arnold
|0 P:(DE-HGF)0
|b 3
|e Editor
700 1 _ |a James, Ralph B.
|0 P:(DE-HGF)0
|b 4
|e Editor
700 1 _ |a Payne, Stephen A.
|0 P:(DE-HGF)0
|b 5
|e Editor
773 _ _ |a 10.1117/12.2526879
856 4 _ |u https://juser.fz-juelich.de/record/868001/files/111140R.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/868001/files/111140R.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:868001
|p VDB:MLZ
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)169828
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)156322
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)142562
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Materie und Technologie
|1 G:(DE-HGF)POF3-630
|0 G:(DE-HGF)POF3-632
|2 G:(DE-HGF)POF3-600
|v Detector technology and systems
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ZEA-2-20090406
|k ZEA-2
|l Zentralinstitut für Elektronik
|x 0
920 1 _ |0 I:(DE-Juel1)JCNS-FRM-II-20110218
|k JCNS-FRM-II
|l JCNS-FRM-II
|x 1
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ZEA-2-20090406
980 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-4-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21