000868043 001__ 868043
000868043 005__ 20210130004044.0
000868043 0247_ $$2doi$$a10.1111/jpy.12444
000868043 0247_ $$2ISSN$$a0022-3646
000868043 0247_ $$2ISSN$$a1529-8817
000868043 0247_ $$2altmetric$$aaltmetric:9652007
000868043 0247_ $$2pmid$$apmid:27402429
000868043 0247_ $$2WOS$$aWOS:000390344600007
000868043 037__ $$aFZJ-2019-06636
000868043 041__ $$aEnglish
000868043 082__ $$a580
000868043 1001_ $$0P:(DE-Juel1)179235$$aReinecke-Levi, Diana$$b0$$eCorresponding author$$ufzj
000868043 245__ $$aCloning, molecular characterization, and phylogeny of two evolutionary distinct glutamine synthetase isoforms in the green microalga Haematococcus pluvialis (Chlorophyceae)
000868043 260__ $$aOxford [u.a.]$$bWiley-Blackwell$$c2016
000868043 3367_ $$2DRIVER$$aarticle
000868043 3367_ $$2DataCite$$aOutput Types/Journal article
000868043 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1580721762_825
000868043 3367_ $$2BibTeX$$aARTICLE
000868043 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000868043 3367_ $$00$$2EndNote$$aJournal Article
000868043 520__ $$aHaematococcus pluvialis (Chlorophyta) is a widely used microalga of great economic potential, yet its molecular genetics and evolution are largely unknown. We present new detailed molecular and phylogenetic analysis of two glutamine synthetase (GS) enzymes and genes (gln) under the Astaxanthin‐inducing conditions of light‐ and nitrogen‐stress. Structure analysis identified key residues and confirmed two decameric GS2 holoenzymes, a cytoplasmic enzyme, termed GS2c, and a plastidic form, termed GS2p, due to chloroplast‐transit peptides at its N‐terminus. Gene expression analysis showed dissociation of mRNA, protein, and enzyme activity levels for both GS2 under different growth conditions, indicating the strong post‐transcriptional regulation. Data‐mining identified novel and specified published gln genes from Prasinophyceae, Chlorophyta, Trebouxiophyceae, Charophyceae, Bryophyta, Lycopodiophyta, Spermatophyta, and Rhodophyta. Phylogenetic analysis found homologues to the cytosolic GS2c of H. pluvialis in all other photo‐ and non‐photosynthetic Eukaryota. The chloroplastic GS2p was restricted to Chlorophyta, Bryophyta, some Proteobacteria and Fungii; no homologues were identified in Spermatophyta or other Eukaryota. This indicates two independent prokaryotic donors for these two gln genes in H. pluvialis. Combined phylogenetic analysis of GS, chl‐b synthase, elongation factor, and light harvesting complex homologues project a newly refined model of Viridiplantae evolution. Herein, a GS1 evolved into the cytosolic GS2c and was passed on to all Eukaryota. Later, the chloroplastic GS2p entered the Archaeplastida lineage via a horizontal gene transfer at the divergence of Chlorophyta and Rhodophyta lineages. GS2p persisted in Chlorophyta and Bryophyta, but was lost during Spermatophyta evolution. These data suggest the revision of GS classification and nomenclature, and extend our understanding of the photosynthetic Eukaryota evolution.
000868043 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000868043 588__ $$aDataset connected to CrossRef
000868043 7001_ $$0P:(DE-HGF)0$$aZarka, Aliza$$b1
000868043 7001_ $$0P:(DE-HGF)0$$aLeu, Stefan$$b2
000868043 7001_ $$0P:(DE-HGF)0$$aBoussiba, Sammy$$b3
000868043 773__ $$0PERI:(DE-600)1478748-9$$a10.1111/jpy.12444$$gVol. 52, no. 6, p. 961 - 972$$n6$$p961 - 972$$tJournal of phycology$$v52$$x0022-3646$$y2016
000868043 8564_ $$uhttps://juser.fz-juelich.de/record/868043/files/Reinecke_et_al-2016-Journal_of_Phycology.pdf$$yRestricted
000868043 8564_ $$uhttps://juser.fz-juelich.de/record/868043/files/Reinecke_et_al-2016-Journal_of_Phycology.pdf?subformat=pdfa$$xpdfa$$yRestricted
000868043 909CO $$ooai:juser.fz-juelich.de:868043$$pVDB
000868043 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179235$$aForschungszentrum Jülich$$b0$$kFZJ
000868043 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aBen-Gurion University $$b1
000868043 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000868043 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYCOL : 2017
000868043 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000868043 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000868043 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000868043 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000868043 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000868043 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000868043 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000868043 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000868043 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000868043 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000868043 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000868043 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000868043 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000868043 920__ $$lno
000868043 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000868043 980__ $$ajournal
000868043 980__ $$aVDB
000868043 980__ $$aI:(DE-Juel1)IBG-2-20101118
000868043 980__ $$aUNRESTRICTED