000868048 001__ 868048
000868048 005__ 20210130004045.0
000868048 0247_ $$2doi$$a10.1038/s41467-019-13673-6
000868048 0247_ $$2Handle$$a2128/23890
000868048 0247_ $$2altmetric$$aaltmetric:72501139
000868048 0247_ $$2pmid$$apmid:31822680
000868048 0247_ $$2WOS$$aWOS:000502090600001
000868048 037__ $$aFZJ-2019-06641
000868048 041__ $$aEnglish
000868048 082__ $$a500
000868048 1001_ $$00000-0003-4185-8807$$aBouda, Martin$$b0$$eCorresponding author
000868048 245__ $$aIn vivo pressure gradient heterogeneity increases flow contribution of small diameter vessels in grapevine
000868048 260__ $$a[London]$$bNature Publishing Group UK$$c2019
000868048 3367_ $$2DRIVER$$aarticle
000868048 3367_ $$2DataCite$$aOutput Types/Journal article
000868048 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1579176444_24850
000868048 3367_ $$2BibTeX$$aARTICLE
000868048 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000868048 3367_ $$00$$2EndNote$$aJournal Article
000868048 520__ $$aLeaves lose approximately 400 H2O molecules for every 1 CO2 gained during photosynthesis. Most long-distance water transport in plants, or xylem sap flow, serves to replace this water to prevent desiccation. Theory predicts that the largest vessels contribute disproportionately to overall sap flow because flow in pipe-like systems scales with the fourth power of radius. Here, we confront these theoretical flow predictions for a vessel network reconstructed from X-ray μCT imagery with in vivo flow MRI observations from the same sample of a first-year grapevine stem. Theoretical flow rate predictions based on vessel diameters are not supported. The heterogeneity of the vessel network gives rise to transverse pressure gradients that redirect flow from wide to narrow vessels, reducing the contribution of wide vessels to sap flow by 15% of the total. Our results call for an update of the current working model of the xylem to account for its heterogeneity.
000868048 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000868048 588__ $$aDataset connected to CrossRef
000868048 7001_ $$0P:(DE-Juel1)129422$$aWindt, Carel W.$$b1
000868048 7001_ $$00000-0001-9466-4761$$aMcElrone, Andrew J.$$b2
000868048 7001_ $$00000-0002-0924-2570$$aBrodersen, Craig R.$$b3
000868048 773__ $$0PERI:(DE-600)2553671-0$$a10.1038/s41467-019-13673-6$$gVol. 10, no. 1, p. 5645$$n1$$p5645$$tNature Communications$$v10$$x2041-1723$$y2019
000868048 8564_ $$uhttps://juser.fz-juelich.de/record/868048/files/s41467-019-13673-6.pdf$$yOpenAccess
000868048 8564_ $$uhttps://juser.fz-juelich.de/record/868048/files/s41467-019-13673-6.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000868048 909CO $$ooai:juser.fz-juelich.de:868048$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000868048 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129422$$aForschungszentrum Jülich$$b1$$kFZJ
000868048 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000868048 9141_ $$y2019
000868048 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000868048 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000868048 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000868048 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000868048 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT COMMUN : 2017
000868048 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNAT COMMUN : 2017
000868048 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000868048 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000868048 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000868048 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000868048 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000868048 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000868048 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000868048 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review
000868048 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000868048 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000868048 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000868048 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000868048 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000868048 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000868048 920__ $$lyes
000868048 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000868048 980__ $$ajournal
000868048 980__ $$aVDB
000868048 980__ $$aUNRESTRICTED
000868048 980__ $$aI:(DE-Juel1)IBG-2-20101118
000868048 9801_ $$aFullTexts