001     868119
005     20210130004112.0
024 7 _ |a 10.1161/STROKEAHA.119.025176
|2 doi
024 7 _ |a 0039-2499
|2 ISSN
024 7 _ |a 1524-4628
|2 ISSN
024 7 _ |a 2128/24553
|2 Handle
024 7 _ |a altmetric:74473589
|2 altmetric
024 7 _ |a pmid:31805844
|2 pmid
024 7 _ |a WOS:000504225600056
|2 WOS
037 _ _ |a FZJ-2019-06706
082 _ _ |a 610
100 1 _ |a Mulder, Inge A.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Increased Mortality and Vascular Phenotype in a Knock-In Mouse Model of Retinal Vasculopathy With Cerebral Leukoencephalopathy and Systemic Manifestations
260 _ _ |a Philadelphia, Pa.
|c 2020
|b Lippincott Williams & Wilkins
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1584350064_20365
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Background and Purpose—Retinal vasculopathy with cerebral leukoencephalopathy and systemic manifestations (RVCL-S) is an autosomal dominant small vessel disease caused by C-terminal frameshift mutations in the TREX1 gene that encodes the major mammalian 3′ to 5′ DNA exonuclease. RVCL-S is characterized by vasculopathy, especially in densely vascularized organs, progressive retinopathy, cerebral microvascular disease, white matter lesions, and migraine, but the underlying mechanisms are unknown.Methods—Homozygous transgenic RVCL-S knock-in mice expressing a truncated Trex1 (three prime repair exonuclease 1) protein (similar to what is seen in patients) and wild-type littermates, of various age groups, were subjected to (1) a survival analysis, (2) in vivo postocclusive reactive hyperemia and ex vivo Mulvany myograph studies to characterize the microvascular and macrovascular reactivity, and (3) experimental stroke after transient middle cerebral artery occlusion with neurological deficit assessment.Results—The mutant mice show increased mortality starting at midlife (P=0.03 with hazard ratio, 3.14 [95% CI, 1.05–9.39]). The mutants also show a vascular phenotype as evidenced by attenuated postocclusive reactive hyperemia responses (across all age groups; F[1, 65]=5.7, P=0.02) and lower acetylcholine-induced relaxations in aortae (in 20- to 24-month-old mice; RVCL-S knock-in: Emax: 37±8% versus WT: Emax: 65±6%, P=0.01). A vascular phenotype is also suggested by the increased infarct volume seen in 12- to 14-month-old mutant mice at 24 hours after infarct onset (RVCL-S knock-in: 75.4±2.7 mm3 versus WT: 52.9±5.6 mm3, P=0.01).Conclusions—Homozygous RVCL-S knock-in mice show increased mortality, signs of abnormal vascular function, and increased sensitivity to experimental stroke and can be instrumental to investigate the pathology seen in patients with RVCL-S.
536 _ _ |a 572 - (Dys-)function and Plasticity (POF3-572)
|0 G:(DE-HGF)POF3-572
|c POF3-572
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Rubio-Beltran, Eloísa
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Ibrahimi, Khatera
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Dzyubachyk, Oleh
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Khmelinskii, Artem
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Hoehn, Mathias
|0 P:(DE-Juel1)176651
|b 5
700 1 _ |a Terwindt, Gisela M.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Wermer, Marieke J. H.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a MaassenVanDenBrink, Antoinette
|0 P:(DE-HGF)0
|b 8
700 1 _ |a van den Maagdenberg, Arn M. J. M
|0 P:(DE-HGF)0
|b 9
|e Corresponding author
773 _ _ |a 10.1161/STROKEAHA.119.025176
|0 PERI:(DE-600)1467823-8
|n 1
|p 300-307
|t Stroke
|v 51
|y 2020
|x 1524-4628
856 4 _ |y Published on 2019-12-06. Available in OpenAccess from 2020-06-06.
|u https://juser.fz-juelich.de/record/868119/files/Mulder_Stroke_Post%20Print_2019_Increased%20Mortality%20and%20Vascular%20Phenotype%20in%20a%20Knock-In%20Mouse%20Model.pdf
856 4 _ |y Published on 2019-12-06. Available in OpenAccess from 2020-06-06.
|x pdfa
|u https://juser.fz-juelich.de/record/868119/files/Mulder_Stroke_Post%20Print_2019_Increased%20Mortality%20and%20Vascular%20Phenotype%20in%20a%20Knock-In%20Mouse%20Model.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:868119
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)176651
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-572
|2 G:(DE-HGF)POF3-500
|v (Dys-)function and Plasticity
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b STROKE : 2017
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b STROKE : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a Allianz-Lizenz
|0 StatID:(DE-HGF)0410
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21