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Abstract. As has been the case in North America and Western Europe, the SOz emissions substantially
reduced in North China Plain (NCP) in recent years. A dichotomy of reductions in SO, and NOx
concentrations result in the frequent occurrences of nitrate (pNOs)-dominated particulate matter
pollution over NCP. In this study, we observed a polluted episode with the nitrate mass fraction in non-
refractory PM; (NR-PM;) up to 44% during wintertime in Beijing. Based on this typical pNOs™-
dominated haze event, the linkage between aerosol water uptake and pNOs3™ formation, further
impacting on visibility degradation, have been investigated based on field observations and theoretical
calculations. During haze development, as ambient relative humidity (RH) increased from ~10% up to
70%, the aerosol particle liquid water increased from ~1 pg/m® at the beginning to ~75 pg/m® at the
fully-developed haze period. Without considering the water uptake, the particle surface area and the
volume concentrations increased by a factor of 4.1 and 4.8, respectively, during the development of
haze event. Taking water uptake into account, the wet particle surface area and volume concentrations
enhanced by a factor of 4.7 and 5.8, respectively. As a consequence, the hygroscopic growth of particles
facilitated the condensational loss of dinitrogen pentoxide (N2Os) and nitric acid (HNOs3) to particles
contributing pNOs". From the beginning to the fully-developed haze, the condensational loss of N2Os
increased by a factor of 20 when only considering aerosol surface area and volume of dry particles,
while increasing by a factor of 25 considering extra surface area and volume due to water uptake.
Similarly, the condensational loss of HNOs3 increased by a factor of 2.7~2.9 and 3.1~3.5 for dry and wet
aerosol surface area and volume from the beginning to the fully-developed haze period. Above results
demonstrated that the pNO;™ formation is further enhanced by aerosol water uptake with elevated

ambient RH during haze development, in turn, facilitating the aerosol taking up water due to the
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hygroscopicity of nitrate salt. Such mutual promotion effect between aerosol particle liquid water and
nitrate formation can rapidly degrade air quality and halve visibility within one day. Reduction of
nitrogen-containing gaseous precursors, e.g., by control of traffic emissions, is essential in mitigating

severe haze events in NCP.
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1 Introduction

Aerosol particle hygroscopicity plays an important role in air quality deterioration and cloud formation
(Yu, 2009;Fitzgerald, 1973;Kreidenweis and Asa-Awuku, 2014;Wang and Chen, 2019;McFiggans et
al., 2006) and can also directly influence aerosol measurements (Chen et al., 2018a). In atmospheric
environments influenced by anthropogenic activities, particulate secondary inorganic compounds are
often dominated by ammonium sulfate ((NH4)>SO4) and ammonium nitrate (NH4NO3) (Heintzenberg,
1989), which originate from the oxidation of sulfur dioxide (SO2) and nitrogen oxides (NOx) via well-
established chemical pathways (Calvert et al., 1985). The abundance of secondary inorganic
components is one of the most important factors determining particle hygroscopicity (Swietlicki et al.,
2008), thereby governing the aerosol liquid water content under ambient moist conditions. Increased
aerosol particle liquid water could accelerate secondary inorganic and organic aerosol formation by
decreasing the kinetic limitation of mass transfer of gaseous precursors and providing more medium for
multiphase reactions (Mozurkewich and Calvert, 1988;Cheng et al., 2016;Wang et al., 2016;Ervens et

al., 2011;Kolb et al., 2010).

Sulfuric acid (H2SO4) is formed from the oxidation of SO; via gaseous and multiphase reactions. H>SO4
is subsequently fully or partly neutralized by gaseous NH3 taken up on particles, resulting in the
formation of (NH4)2SO4 and / or NH4HSO4. Any remaining NH3 is available to neutralize HNOs to
form particulate NH4NO3 (Seinfeld. and Pandis., 2006) (and further excess NH3 can neutralize any
available HCI to form particulate NH4Cl). Over the past several decades, substantial efforts have

reduced emissions of both SOz and NOx improving the local and regional air quality all over the world.
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For example, SO, and NOx emissions were reduced by 82% and 54% in the majority of European

Environment Agency member countries between 1990 and 2016 (https://www.eea.europa.eu/data-and-

maps/indicators/main-anthropogenic-air-pollutant-emission _s/assessment-4). In consequence, an

increasing trend of NO3/SO4* molar ratio was observed in long-term measurements at Leipzig,
Germany (Spindler et al., 2004) and at some other European sites from the European Monitoring and
Evaluation Programme (EMEP) (Putaud et al., 2004). In recent years, China has also managed to reduce
SO, emissions by 75% since 2007 (Li et al., 2017a), whereas NOx emissions declined only by ~10%
between 2011 and 2015 (de Foy et al., 2016). Similar with European countries, the dominant inorganic
component in fine aerosol particles has switched from sulfate to nitrate in the recent years (Sun et al.,
2015;Hu et al., 2017;Hu et al., 2016;Wu et al., 2018;Guo et al., 2014;Huang et al., 2014;Huang et al.,
2010;Ge et al., 2017;Xu et al., 2019a;Xie et al., 2019;Li et al., 2018). Field measurements show that
annually averaged NO3/SO4* molar ratio of NR-PM; (non-refractory PM;) in 2012 (1.3~1.8) (Sun et
al., 2015) has significantly increased compared to that in 2008 (0.9~1.5) (Zhang et al., 2013).
Comparably, the NO3/SO4* molar ratio of PM, 5 increased substantially, from 1.5 before 2013 to 3.33
in 2017 (Xu et al., 2019a). Model simulations have also shown that the simulated annual mass
concentration of nitrate and its mass fraction in secondary inorganic components over North China
increased by 17~19% and 7% respectively, while the sulfate mass and fraction decreased by 10~19%
and 6% between 2006 and 2015 under the assumption of constant NH; emissions (Wang et al., 2013).
However, NH3 emissions have been observed by satellites to increase by ~30% from 2008 to 2016 over
the North China Plain (NCP) (Liu et al., 2018), further increasing the potential for nitrate formation

(Wang et al., 2013).



120

125

130

135

https://doi.org/10.5194/acp-2019-716 Atmospheric
Preprint. Discussion started: 26 September 2019 Chemistry
(© Author(s) 2019. CC BY 4.0 License. and Physics

Discussions
BY

Over the NCP region, heavy haze events are typically associated with enhanced ambient RH levels.
This leads to an increased aerosol liquid water content (Wu et al., 2018), which will influence the
particulate nitrate formation by changing the reactive uptake of precursors and the thermodynamic
equilibrium of ammonium nitrate (Cheng et al., 2016;Wang et al., 2016;Wang et al., 2017;Yun et al.,
2018;Yue et al., 2019). To date, few studies reported aerosol liquid water content over NCP region
(Wang et al., 2018;Bian et al., 2014;Cheng et al., 2016;Wu et al., 2018). However, the observational
and theoretical analysis of the relationship between particulate nitrate formation and associated liquid

water during haze events in China has been infrequently reported (Wu et al., 2018).

In this study, a self-amplification effect between particulate nitrate and liquid water is demonstrated by
examining a nitrate-dominated fine particle Beijing pollution episode. The facilitation of particulate
nitrate formation by abundant liquid water is subsequently theoretically explored through the impacts of
liquid water on thermodynamic equilibrium and heterogeneous reactions. Finally, the corresponding
impacts on light extinction coefficient, and visibility degradation are estimated. These results improve
our quantitative understanding of the development of haze events over the NCP and on formulating

emission reduction strategies, as well as may also provide insights for other polluted regions.

2 Measurements and Methods

2.1 Location and instrumentation

Measurements were conducted within the framework of the BEST-ONE (Beijing winter finE particle

STudy- Oxidation, Nucleation, and light Extinctions) field campaign from January 1 to March 5, 2016,
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at the Huairou site (40.42°N, 116.69°E), located in a rural environment, north of Beijing, China.
Detailed information about the sampling site was described in Tan et al. (2018). A weather station (Met
one Instrument Inc., USA) was performed to measure meteorological parameters (ambient RH,
temperature, wind speed, wind direction) and detailed aerosol particle physical and chemical properties
were recorded using a suite of state-of-the-science instrumentation. Hygroscopic growth factor (HGF)
of sub-micrometer aerosol particles was measured using a Hygroscopicity-Tandem Differential
Mobility Analyzer (H-TDMA, TROPOS, Germany) (Wu et al., 2011;Massling et al., 2011;Wang et al.,
2018;Wu et al., 2016;Liu et al., 1978) and data retrieval followed the TDMA;,y method in Gysel et al.
(2009). The hygroscopicity parameter (k) was estimated using by the k-Kohler approach (Petters and
Kreidenweis, 2007;Kdhler, 1936). Size-resolved NR-PM; was recorded by an Aerodyne High-
Resolution Time-of-Flight Aerosol Mass Spectrometry (HR-ToF-AMS, Aerodyne Research, Inc., USA)
(DeCarlo et al., 2006). Regular calibration procedures followed as reported in Jayne et al. (2000) and
Jimenez et al. (2003) and composition dependent correction followed as in Middlebrook et al. (2012).
Gaseous HNO; and NH3 were measured using Gas-Aerosol Collector (GAC) coupled with Ion
Chromatography (IC) (Dong et al., 2012). Mass concentration of equivalent black carbon in aerosol
particles (Petzold et al., 2013) was recorded by Multi Angle Absorption Photometer (MAAP, Model
5012, Thermo Fisher Scientific, USA) with a laser wavelength of 670 nm (Petzold and Schonlinner,
2004). Furthermore, particle number size distribution (PNSD) in the size range of 3 nm~10 pm was
measured using a Mobility Particle Size Spectrometer (MPSS, Model 3776+3085 3775+3081, TSI,
USA), following the recommendations described in Wiedensohler et al. (2012) and an Aerodynamic

Particle Size Spectrometer (APS, Model 3021, TSI, USA) (Wu et al., 2008;Pfeifer et al., 2016).
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Detailed description on H-TDMA, HR-ToF-AMS and GAC-IC can be found in the supporting

information.
2.2 Estimation of aerosol particle liquid water

Given the absence of direct liquid water measurement, size-resolved liquid water was calculated using
the corresponding HGFs measured at RH=90% (50, 100, 150, 250, 350 nm in stokes diameter), PNSD
data (3 nm~10 pm) and meteorological parameters (RH, T), following the method proposed in Bian et
al. (2014), referred to below as H-TDMA-derived liquid water. Briefly, the measured PNSD with 57
size bins were fitted using a four-mode lognormal distribution. The classification of four modes and the
fitting results are shown in Table S1 and Figure S4. Good agreement between measured values and
fitted PNSD was achieved, which indicates the reliability of the four-mode lognormal fitting method.
Based on four-mode lognormal fitting results, the particle number size distribution and number fractions
of each mode can be obtained. It has been assumed that particles from the same mode have constant
particle hygroscopicity (k). Under the assumption of constant particle hygroscopicity in each mode
(shown in Table S1), the x values for each mode (x;, k2, k3) can be calculated by equation [1] from the
known number fraction of fitted four modes and the x values of measured particle size from H-TDMA

measurement.
— 24— . 1
K= i=1Klfl [ ]

Here, x;and f; represent the x value and the particle number fraction of the i mode. Then, the calculated
x values for each mode and the derived number fraction of each size bin were used to obtain the x
distribution for each size bin. Figure S5 shows the comparison of calculated sized-resolved

8
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distribution and the ¥ measured by H-TDMA, the good agreement showed the reliability of the method.
Then, based on x-Kdlher theory (Petters and Kreidenweis, 2007;K6hler, 1936), the size-resolved HGF's
at ambient RH were calculated. Finally, liquid water of size-resolved particles can be derived by

calculating the differentials between the dry and wet PNSD of aerosol particles in equation [2]:

Liquid water = ZN;D3  (HGF(D,, RH)’ = 1) xp,,  [2]

where j represents the bin number of measured PNSD, N;and Dp; represent the number concentration
and the diameter of dry particles of the j™ bin, respectively, while, HGF and pw, are the hygroscopic

growth factor of aerosol particles and water density (1 g/cm?), respectively.
2.3 Condensation rate of trace gases

The condensation rate (k) of trace gases (dinitrogen pentoxide, NoOs and nitric acid, HNO; in the
constrained conditions, referred as k NoOs and k HNOs; below) was calculated by the method of
Schwartz (1986), shown in equation [3]. In order to illustrate the influences of the dry and wet PNSD
due to water uptake on condensation rate of gases, the PNSD of the dry and wet particles (obtained by

applying the HGF estimated from H-TDMA-derived liquid water method) were used.

_4—_1'[ o i 4r -1..3 dN
k= 3 fO (3Dg + 3ng) r dlogr legT‘ [3]

3RT
Cy= |5 [4]

Where, r represents radius of the particles, D, represents the binary diffusion coefficient evaluated

following Maitland (1981) (1.18*¢™ m?/s). C is the kinetic velocity of the gas molecules, calculated in
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equation [4]. Here, R and M are the ideal gas constant (8.314 kg.m?/mol/K/s?) and molar mass of the
gas, respectively while T represents the ambient temperature. dN/dlogr is the number size distribution

and vy is the uptake coefficient of the gas.

The uptake coefficient of N2Os was estimated following the method proposed in Chen et al. (2018b) and
Chang et al. (2016) and references therein. The uptake suppression effect of NoOs due to the presence of
secondary organic aerosol (SOA) was considered following the method in Anttila et al. (2006). Based
on our source apportionment using Positive matrix factorization (SoFi tool, ME2, Francesco Canonaco,
PSI), two oxygenated organic aerosol factors (OOA), usually interpreted as SOA, and three primary
organic aerosol factors (POA) were determined. The fraction of SOA in the total organic aerosol (OA)
was 60%~90% during the observed period, which is quite consistent with the results of a previous study
in Beijing (Huang et al., 2014). Hence, 75% was used as the ratio of SOA/OA in our model to calculate
uptake coefficient of the N>Os, where the suppression effect of SOA on the uptake of N>Os was
estimated following the work of Anttila et al. (2006). Additionally, the reaction of chloride with N2Os
was not considered in this study due to its limited mass concentration (on average 5% of the PM; mass
concentration during the marked haze period), which might cause uncertainty in the k N2Os calculation.
The detailed information regarding the estimation yn20s is given in Chen et al. (2018b). For the
estimation of yunos, it was reported that the yunos on the solid and deliquesced inorganic compound
such like sodium chloride were 0.01~0.03 (Fenter et al., 1994;Leu et al., 1995;Beichert and Finlayson-
Pitts, 1996) and >0.2 (even 0.5) (Guimbaud et al., 2002;Abbatt and Waschewsky, 1998), respectively.
Therefore, yuno3=0.01 and yuno3=0.5 are selected to calculate the lower and upper limit of condensation

rate of HNOs3 in the atmosphere.

10
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2.4 Equilibrium of NHsNO3

The equilibrium dissociation constant of NH4NO3 (Kp) under dry conditions was calculated as a

function of ambient temperature (Seinfeld. and Pandis., 2006) in the following equation [5].

InkK, = 84.6 — 222

—6.1ln (i) [5]

298

Taking into account the associated liquid water, the equilibrium vapor pressure of HNO; was calculated
by employing the Extended-Aerosol Inorganic Model (E-AIM) Model Il H' - NH4" - SO4* - NOs™ - H,0
(Clegg et al., 1998) using HR-ToF-AMS data, NH3 from GAC-IC, and meteorological parameters (RH,
T). In this calculation, a simplified ion pairing scheme was performed to ensure the ion balance of the

input chemical composition following the method in Gysel et al. (2007).
2.5 Light extinction coefficient and visibility calculation

Size-resolved chemical composition of the NR-PM; from HR-ToF-AMS, mass concentration of
equivalent black carbon from MAAP, PNSD data and the H-TDMA-derived liquid water were used to
calculate light extinction coefficient (including light absorption and scattering) and visibility
degradation of size-resolved particles by the Mie scattering theory described in Barnard et al. (2010).
Here, size-resolved equivalent black carbon mass concentration was inferred by the particle mass size
distribution measurement from single particle soot photometer in PKUERS. The method of re-
distribution of liquid water and HR-ToF-AMS data has been described in the supporting information
(Text S1, HR-ToF-AMS introduction section). Thus, with the re-distributed datasets as the input of the

Mie scattering theory, the light extinction coefficient for atmospheric particles in the absence and

11
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presence of liquid water with a size range of 100~2500 nm in stokes diameter can be derived. Due to
lack of measurements on aerosol particle morphology and mixing state, we assume particles are
spherical as described in Barnard et al. (2010). To perform Mie calculation, the complex reflective
index of each component is given in Table 1 of Barnard et al. (2010) and references therein. This
method shows good agreement with measurements in Mexico City and is consistent as the regional
atmospheric chemistry model WRF-Chem. Here, Ext 550nm_wet and Ext 550nm_dry represent the
calculated light extinction coefficient for particles in the presence and absence of liquid water at an
incident light wavelength of 550 nm. The corresponding visibility degradation (VIS) for dry/wet
particles was calculated from the light extinction coefficient following the Koschmieder equation [6].

VIS = 3.912 [6]

Ext 55 am

3 Results and Discussion

3.1 Nitrate-dominated fine particulate matter pollution

Figure 1 illustrates a summary of chemical composition of NR-PM;, ambient RH, size distribution and
total aerosol particle liquid water, size distribution and total aerosol surface area concentration during
the period of February 29 to March 5, 2016 in the BEST-ONE campaign. During this period, polluted
episodes occurred under stagnant meteorological conditions with low wind speed (Figure S6) and
elevated ambient RH (Figure 1a). As marked ‘haze period’ in Figure 1, an obvious increase of NR-PM;
was observed. The secondary inorganic components (sulfate, nitrate and ammonium) were dominant
components of the NR-PM1, accounting for up to 73% during the ‘haze period’. Particularly, nitrate was

12
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the major contributor of the secondary inorganic components and accounted for up to ~44% of NR-PM;

mass, while sulfate contributed for ~12% on average.

In the recent decade, severe haze events with high aerosol mass loading occurred frequently in Beijing
during wintertime (Hu et al., 2016;Hu et al., 2017;Sun et al., 2014;Sun et al., 2015). To mitigate the air
pollution, the Beijing government implemented strict emission controls. The total mass loading of

particulate matter has reduced substantially in the recent years (http://sthjj.beijing.gov.cn/). With

decreasing in PM mass concentration, the mass fraction of particulate nitrate during these haze events in
Beijing enhanced substantially. In 2014, the highest fraction of nitrate in PM; was reported as ~20% and
increased to ~35% in 2016 (Xu et al., 2019b), which is comparable to the ratio (44%) in this study. The
particulate nitrate became more dominant in secondary inorganic compounds other than particulate

sulfate with the air quality improvement over NCP.

As one of the main hydrophilic compounds in atmospheric aerosol particles, the ability of water uptake
at 90% RH of particulate NH4NO3 is comparable with particulate (NH4)2SO4 (Kreidenweis and Asa-
Awuku, 2014;Wu et al., 2016). However, compared to (NH4)>SO4, NH4NO3 particles have a lower
deliquescence RH (62%, 298 K) than (NH4)2SO4 (80%, 298 K) (Kreidenweis and Asa-Awuku, 2014),
and easily liquify (Li et al., 2017b). In addition, NH4NOs particles are semi-volatile, the co-
condensation of semi-volatile compounds and water (Topping et al., 2013;Hu et al., 2018) could be
significant. Therefore, the switching from sulfate-dominated to nitrate-dominated aerosol chemistry
may impact on aerosol water uptake. The interaction between aerosol particle liquid water and

particulate nitrate formation and visibility degradation should be reconsidered.

13
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3.2 Mutual promotion effects between liquid water and nitrate formation

In the following discussion, the high fraction of particulate nitrate during the ‘haze period’ is elucidated
by theoretical calculations considering the uptake of N>Os and HNOs;, and the thermodynamic
equilibrium of NH4NO:s. In particular, the role of aerosol water uptake in particulate nitrate formation is

comprehensively investigated.

N20s is an important gaseous precursor for nitrate formation via its hydrolysis to form HNO; during
nighttime (Brown et al., 2006). Liquid water can enhance aerosol surface areas and volumes, thereby
increasing the available heterogeneous reacting medium. Across the development of ‘haze period’, the
estimated liquid water increased from ~1 pg/m? at the beginning (2™ March, 14:00~18:00 p.m.) to ~75
ng/m®> when the haze was fully developed (4™ March, 4:00~8:00 a.m.). The total surface area and
volume concentrations of particles were increased by the liquid water by 2~3% at the beginning and by
about 25~40% in the fully-developed haze compared to the ‘dry’ values, respectively (see Figure S7 and
S8). Additionally, from the beginning to the fully-developed haze, the uptake coefficient of N>Os was
enhanced by a factor of 9 from 0.002 to 0.018, and the k N>Os increased by a factor of 20 (dry
particles); while, considering the increased particle surface area and volume due to water uptake, the
respective value of enhanced k N>Os was 25 (Figure 2a). Apart from providing extra reacting medium,
the abundant liquid water can liquefy the aerosol particles and may reduce any kinetic limitation of
mass transfer for reactive gases (Koop et al., 2011;Shiraiwa et al., 2011) and impact thermodynamic
equilibrium of semi-volatile compounds (Kulmala et al., 1993;Topping et al., 2013) to contribute to
secondary aerosol formation. Our previous study provided the observational evidence that particles may

have transitioned from the solid phase to the liquid phase as RH increased from 20% to 60% during
14
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wintertime in Beijing (Liu et al., 2017). In this study, the ambient RH increased from ~10% up to 70%
during the haze period, suggesting a likely transition of particles from the solid to liquid phase. Such
phase transition may facilitate particulate nitrate formation by increasing diffusion coefficients of

dissolved precursors.

To illustrate the facilitation of nitrate formation in the presence of liquid water, we performed the
theoretical calculation of equilibrium between particulate NH4NO3 and gaseous HNOs under dry and
ambient conditions, respectively. First, the dissociation constant of NH4NO3 (Kp) was calculated using
equation [5] without considering the influence of the liquid water. Kp ranged from 0.06 (275.3 K) to
4.61 (291.5 K) ppb? during the ‘haze period’. The measured partial pressure product (2.55~9.63 ppb?)
was greater than the equilibrium Kp nearly all the time (Figure 3). In this case, gaseous NH; and HNO;
in the atmosphere were supersaturated and would tend to partition into the dry particle phase gradually
even in the absence of liquid water. The presence of liquid water under ambient RH can supress the
HNO:s equilibrium vapor pressure to nearly zero, changing equilibrium and facilitate the partitioning of
nitrate substantially. The equilibrium vapor pressure of HNOs over particles was calculated by E-AIM
Model II (www.aim.env.uea.ac.uk) taken into account the liquid water. Note that this calculation
assumes negligible interaction between dissolved organic components and the activity of NOs™. In the
presence of aerosol associated water, the HNOj3 equilibrium vapor pressure dropped from its dry values
to effectively zero, indicating liquid water significantly favored greater partitioning to particulate
nitrate. The negligible equilibrium vapor pressure of HNOj3 resulted in essentially no HNOj; evaporation
back to the gas phase and irreversible uptake of HNOj3 can be assumed under the ambient RH and NH3

concentration. This enabled the simplified treatment of the irreversible condensation rate following

15
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Schwartz (1986) used below. As shown in Figure 4, the partitioning ratio (molar ratio between
particulate and total nitrate) increasing with RH was observed during the development of haze, and 98%
of nitrate was present as particle phase when the haze was fully developed with liquid water increasing

from 1 pg/m? to ~75 pg/m’.

Furthermore, the presence of aerosol associated water was substantially enhanced by the uptake rate of
HNOs, which could dominate the gaseous HNOs3 partitioning into particle phase throughout the haze
developing. Because the negligible equilibrium vapor pressure suggests that HNO3; condensation loss
was not limited by thermodynamic equilibrium but limited by its uptake rate. The condensation (or
uptake) rate of HNO3 (k_ HNOs3) can be calculated using equations [3-4]. Here, the lower and upper
limit of k HNO3 were calculated assuming the uptake coefficient (y) of HNOs in the range of 0.01 to
0.5 (Fenter et al., 1994;Leu et al., 1995;Beichert and Finlayson-Pitts, 1996;Abbatt and Waschewsky,
1998;Guimbaud et al., 2002). As shown in Figure 2b and 2c, the lower (upper) limit of k HNO3
increased by a factor of 2.9 (2.7) for dry PNSD and 3.5 (3.1) for wet PNSD from the beginning to fully-
developed haze period. As one can see, the liquid water facilitated the rate of HNOs uptake and hence

the particulate nitrate formation.

The above analyses quantify the effect of the increased aerosol surface area and volume concentrations
resulting from the water uptake on the particulate nitrate formation through increased uptake of N2Os
and HNOs. Such an effect becomes more pronounced with the increasing pollution throughout the haze
event owing to the simultaneously increasing ambient RH. Owing to its hygroscopicity, the increased

ammonium nitrate mass fraction led to a further increase in aerosol surface area and volume
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concentrations through additional increase in liquid water, further enhancing uptake of condensable

Vapors.

It is worth noting that a similar co-condensation effect between water vapor and semi-volatile organic
components (Topping and McFiggans, 2012;Topping et al., 2013;Hu et al., 2018) could promote the
haze formation as well, for which there may be some evidence in the current case. Such a co-
condensation effect will lead to the enhancement of semi-volatile organic and inorganic (e.g., nitrate)
material with the increasing RH in a developing haze. The associated water will favor partitioning of
both particulate nitrate and semi-volatile organic materials to the particle phase depending on the
organic solubility, providing a linkage between the development of increasing organic and inorganic

particle mass.
3.3 The key role of liquid water on visibility degradation

Aerosol particles grow up in size as ambient RH increases, further enhances their extinction coefficient
and impacts visibility (Zhao et al., 2019;Kuang et al., 2016). In this section, size-resolved extinction
coefficient of aerosol particles was estimated, and the influences of liquid water on the extinction
coefficient and visibility were quantitatively evaluated. As shown in Figure 5a, the total light extinction
coefficient of dry and wet aerosol particles enhanced by a factor of 4.3 and 5.4, respectively, from the
beginning to a fully-developed haze. Correspondingly, the calculated visibility without considering
liquid water degraded significantly from ~10 km to less than 2 km within 48 hours during the marked

‘haze period’. The contribution of aerosol associated water to visibility impairment was negligible in the
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beginning (2%), while it was significant (up to 24%) in the fully-developed haze (Figure 5b). This

indicates that liquid water facilitated visibility degradation during haze development.

The influences of liquid water on visibility degradation varied with aerosol particle size. The size-
resolved chemical composition data showed that the inorganic species, mainly nitrate, were dominant
components in the aerosol particles within the size range of 300~700 nm (Figure S3). Correspondingly,
the particles in this size range contained most of the liquid water (50~80% of the total aerosol liquid
water content of PM). According to discussion in Sec. 3.2, the mutual promotion effect between liquid
water and particulate nitrate can promote their formation. Aerosol particles in this size range
experienced the most significant enhancement of light extinction due to water uptake (Figure 6a and 6b)
and contributed 70~88% of the total extinction coefficient of the total NR-PM; (Figure S9). In
conclude, the rapid nitrate formation enhanced the aerosol extinction coefficient during haze
developing, while the aerosol water uptake further enhanced the visibility degradation by increasing

extinction coefficient and promoting nitrate formation.

It is worth noting that the enhanced dimming effect will further shallower the planetary boundary layer
(PBL), which, in turn, depresses the dilution of water vapor and particulate matter in the atmosphere,
hence leads to a higher RH and aerosol particle mass loading (Tie et al., 2017). Such effect is beyond

the scope of this study.
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4 Conclusions and implication

In this study, we observed a nitrate-dominated (up to 44% of non-refractory PM; mass concentration)
particulate matter pollution episode, which is typical during winter haze in Beijing, China. A clear co-
increase of aerosol particle liquid water and particulate nitrate was observed, demonstrating the mutual

promotion effect between them via observation-based theoretical calculations.

As shown in Figure 7, the water uptake by hygroscopic aerosols increased the aerosol surface area and
volume, favoring the thermodynamic equilibrium of ammonium nitrate and enhancing the
condensational loss of N2Os and HNOs over particles. The enhanced particulate nitrate formation from
the above pathways increased the mass fraction of particulate nitrate, which had a lower deliquescence
RH than sulfate and resulted in more water uptake at lower ambient RH (Kreidenweis and Asa-Awuku,
2014). Hence, the increased aerosol particle surface area and volume concentrations due to water
uptake, in turn facilitates particulate nitrate formation. Hence, a feedback loop between liquid water and
particulate nitrate is built up. Therefore the enhanced particulate nitrate components can accelerate the
feedback compared with sulfate-rich pollution over the NCP region in the past (Hu et al., 2016). This
self-amplification can rapidly degrade air quality and halve visibility within one day. Our results
highlight the importance of reducing the particulate nitrate and its precursors (e.g. NOx) for mitigation

of haze episodes in NCP region.
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Data availability

The observational dataset of the BEST-ONE campaign can be accessed through the corresponding

author Z. Wu (zhijjunwu@pku.edu.cn).

The E-AIM model can be accessed via http://www.aim.env.uea.ac.uk/aim/aim.php.
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Figure 1: The time series of (a) NR-PMi chemical composition measured by the HR-ToF-AMS
and ambient RH (red solid line), (b) size-segregated aerosol particle liquid water and the total
mass concentration of liquid water with smaller than 1 pm in aerodynamic diameter (red solid
line), (c) size-segregated aerosol particle surface area and total aerosol particle surface area

700 without considering particle hygroscopic growth.
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Figure 2: The time series of (a) condensation rate of N20Os (k_N20s) with the calculation of dry
particle number size distribution (PNSD) and wet PNSD, (b-c) condensation rate of HNO3
(k_HNO3) with the calculation of dry and wet PNSD under the assumption of y=0.01 and y=0.5,

respectively during February 29 to March 5, 2016.
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Figure 3: The comparison of the calculated temperature-dependent dissociation constant of
NH4NOs3 (Kp) (Seinfeld. and Pandis., 2006) in the absence of liquid water and the product of
710 mixing ratios of gaseous NH3 and HNO3 measured by GAC-IC (M_pNH3pHNO3). Here, Kp is

colored by the ambient temperature ranging 265~293K during February 29 to March 5, 2016.
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Figure 4: The relationship between aerosol particle liquid water and myy,no,/(Muno, +
715 Mypy,no,) (left axis) and mass concentration of NH4NOs in the particle phase (right axis) during

the period of February 29 to March 5, 2016. Here, NHsN O3 in the particle phase was measured by
HR-ToF-AMS and the HNOs in the gas phase was measured by GAC-IC. Liquid water was

calculated by H-TDMA-derived method.
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720  Figure S: The time series of (a) calculated total extinction coefficient at wavelength of 550 nm with
the consideration of dry and wet PNSD, referred as Extinction coefficient_dry and Extinction
coefficient_wet, (b) calculated visibility with the consideration of dry and wet PNSD, referred as
Visibility_dry and Visibility_wet, respectively. Visibility degradation percentage is
(Visibility_wet-Visibility_dry)/Visibility_dry, representing the visibility degradation in the

725 presence of liquid water.
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Figure 6: (a) Size-segregated light extinction coefficient at wavelength of 550 nm for wet particles

(Extinction coefficient_wet), (b) size-segregated difference between Extinction coefficient wet and

730 Extinction coefficient_dry, representing light extinction coefficient difference with and without

considering liquid water.
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