000868149 001__ 868149
000868149 005__ 20210130004116.0
000868149 0247_ $$2doi$$a10.1016/j.neuroimage.2019.116426
000868149 0247_ $$2ISSN$$a1053-8119
000868149 0247_ $$2ISSN$$a1095-9572
000868149 0247_ $$2Handle$$a2128/23688
000868149 0247_ $$2altmetric$$aaltmetric:71477343
000868149 0247_ $$2pmid$$apmid:31794856
000868149 0247_ $$2WOS$$aWOS:000509662600056
000868149 037__ $$aFZJ-2019-06723
000868149 082__ $$a610
000868149 1001_ $$0P:(DE-HGF)0$$aChen, Siyi$$b0$$eCorresponding author
000868149 245__ $$aTracking the completion of parts into whole objects: Retinotopic activation in response to illusory figures in the lateral occipital complex
000868149 260__ $$aOrlando, Fla.$$bAcademic Press$$c2020
000868149 3367_ $$2DRIVER$$aarticle
000868149 3367_ $$2DataCite$$aOutput Types/Journal article
000868149 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1576658424_4543
000868149 3367_ $$2BibTeX$$aARTICLE
000868149 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000868149 3367_ $$00$$2EndNote$$aJournal Article
000868149 520__ $$aIllusory figures demonstrate the visual system’s ability to integrate separate parts into coherent, whole objects. The present study was performed to track the neuronal object construction process in human observers, by incrementally manipulating the grouping strength within a given configuration until the emergence of a whole-object representation. Two tasks were employed: First, in the spatial localization task, object completion could facilitate performance and was task-relevant, whereas it was irrelevant in the second, luminance discrimination task. Concurrent functional magnetic resonance imaging (fMRI) used spatial localizers to locate brain regions representing task-critical illusory-figure parts to investigate whether the step-wise object construction process would modulate neural activity in these localized brain regions. The results revealed that both V1 and the lateral occipital complex (LOC, with sub-regions LO1 and LO2) were involved in Kanizsa figure processing. However, completion-specific activations were found predominantly in LOC, where neural activity exhibited a modulation in accord with the configuration’s grouping strength, whether or not the configuration was relevant to performing the task at hand. Moreover, right LOC activations were confined to LO2 and responded primarily to surface and shape completions, whereas left LOC exhibited activations in both LO1 and LO2 and was related to encoding shape structures with more detail. Together, these results demonstrate that various grouping properties within a visual scene are integrated automatically in LOC, with sub-regions located in different hemispheres specializing in the component sub-processes that render completed objects.
000868149 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x0
000868149 588__ $$aDataset connected to CrossRef
000868149 7001_ $$0P:(DE-Juel1)131747$$aWeidner, Ralph$$b1$$ufzj
000868149 7001_ $$0P:(DE-Juel1)171481$$aZeng, Hang$$b2$$ufzj
000868149 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon R.$$b3$$ufzj
000868149 7001_ $$0P:(DE-HGF)0$$aMüller, Hermann J.$$b4
000868149 7001_ $$0P:(DE-HGF)0$$aConci, Markus$$b5
000868149 773__ $$0PERI:(DE-600)1471418-8$$a10.1016/j.neuroimage.2019.116426$$gVol. 207, p. 116426 -$$p116426 -$$tNeuroImage$$v207$$x1053-8119$$y2020
000868149 8564_ $$uhttps://juser.fz-juelich.de/record/868149/files/1-s2.0-S1053811919310171-main.pdf$$yOpenAccess
000868149 8564_ $$uhttps://juser.fz-juelich.de/record/868149/files/1-s2.0-S1053811919310171-main.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000868149 909CO $$ooai:juser.fz-juelich.de:868149$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000868149 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131747$$aForschungszentrum Jülich$$b1$$kFZJ
000868149 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171481$$aForschungszentrum Jülich$$b2$$kFZJ
000868149 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b3$$kFZJ
000868149 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000868149 9141_ $$y2020
000868149 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000868149 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000868149 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000868149 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000868149 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEUROIMAGE : 2017
000868149 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000868149 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000868149 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000868149 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000868149 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000868149 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNEUROIMAGE : 2017
000868149 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000868149 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000868149 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000868149 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000868149 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000868149 920__ $$lyes
000868149 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000868149 980__ $$ajournal
000868149 980__ $$aVDB
000868149 980__ $$aUNRESTRICTED
000868149 980__ $$aI:(DE-Juel1)INM-3-20090406
000868149 9801_ $$aFullTexts