
OPENACC TUTORIAL
ESM SYMPOSIUM JSC 2019
28 May 2019 Andreas Herten Forschungszentrum Jülich

Member of the Helmholtz Association

Outline
The GPU Platform

Introduction
Threading Model
App Showcase
Parallel Models

OpenACC
History
OpenMP
Modus Operandi
OpenACC’s Models

OpenACC by Example
OpenACCWorkflow
Identify Parallelism
Parallelize Loops

parallel
loops
pgprof
kernels

Data Transfers
GPUMemory Spaces
Portability
Clause: copy
Visual Profiler

Data Locality
Analyse Flow
data
enter data

Optimize
Levels of Parallelism
Clause: gang
Memory Coalescing
Pinned

Interoperability
The Keyword
Tasks

Task 1
Task 2
Task 3
Task 4

Conclusions
List of Tasks

Now: Download and install
PGI Community Edition

Jump to Task 0

Member of the Helmholtz Association 28 May 2019 Slide 1 118

https://www.pgroup.com/products/community.htm

The GPU Platform

Member of the Helmholtz Association 28 May 2019 Slide 2 118

CPU vs. GPU
Amatter of specialties

Transporting one

Gr
ap

hi
cs
:L
ee

[2
]a

nd
Bo

b
Ad

am
s[
3]

Transporting many

Member of the Helmholtz Association 28 May 2019 Slide 3 118

CPU vs. GPU
Chip

ALUALU

ALU ALU
Control

Cache

DRAM DRAM

Member of the Helmholtz Association 28 May 2019 Slide 3 118

Processing Flow
CPU→ GPU→ CPU

CPU

CPUMemory

Scheduler

. . .

Interconnect

L2

DRAM

1 Transfer data from CPU memory to GPU memory, transfer
program

2 Load GPU program, execute on SMs, get (cached) data from
memory; write back

3 Transfer results back to host memory

Member of the Helmholtz Association 28 May 2019 Slide 4 118

Processing Flow
CPU→ GPU→ CPU

CPU

CPUMemory

Scheduler

. . .

Interconnect

L2

DRAM

1 Transfer data from CPU memory to GPU memory, transfer
program

2 Load GPU program, execute on SMs, get (cached) data from
memory; write back

3 Transfer results back to host memory

Member of the Helmholtz Association 28 May 2019 Slide 4 118

Processing Flow
CPU→ GPU→ CPU

CPU

CPUMemory

Scheduler

. . .

Interconnect

L2

DRAM

1 Transfer data from CPU memory to GPU memory, transfer
program

2 Load GPU program, execute on SMs, get (cached) data from
memory; write back

3 Transfer results back to host memory

Member of the Helmholtz Association 28 May 2019 Slide 4 118

Processing Flow
CPU→ GPU→ CPU

CPU

CPUMemory

Scheduler

. . .

Interconnect

L2

DRAM

1 Transfer data from CPU memory to GPU memory, transfer
program

2 Load GPU program, execute on SMs, get (cached) data from
memory; write back

3 Transfer results back to host memory
Old: Manual data transfer invocations – UVA
New: Driver automatically transfers data – UM

Member of the Helmholtz Association 28 May 2019 Slide 4 118

CUDA Threading Model
Warp the kernel, it’s a thread!

Methods to exploit parallelism:

Thread → Block

Block → Grid

Threads & blocks in 3D3D3D3D

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!

Parallel function: kernel

Member of the Helmholtz Association 28 May 2019 Slide 5 118

Getting GPU-Acquainted
Preparations

Task 0⋆: Setup

Login to JUWELS
ssh name1@juwels.fz-juelich.de

Source our environment
source $PROJECT_training1916/env.sh (→ man esm-tutorial)
Copy material to your home directory (call esm_sync_material)
Directory of tasks: $HOME/GPU/Tasks/Tasks/
Solutions are always given, you decide when to look ($HOME/GPU/Tasks/Solutions/)

Done?
→ bit.ly/esm-acc

Member of the Helmholtz Association 28 May 2019 Slide 6 118

http://bit.ly/esm-acc

Getting GPU-Acquainted
Some Applications

Task 0: Getting Started

Change to GPU/Tasks/Task0/ directory
Read Instructions.rst

GEMM N-Body

Dot ProductMandelbrot

TASK 0

Member of the Helmholtz Association 28 May 2019 Slide 7 118

Getting GPU-Acquainted
Some Applications

2048 4096 6144 8192 10240 12288 14336 16384
Size of Square Matrix

0

500

1000

1500

2000

GF
LO

P/
s

CPU
GPU

20000 40000 60000 80000 100000 120000
Number of Particles

0

2000

4000

6000

8000

10000

12000

GF
LO

P/
s

1 GPU SP
2 GPUs SP
4 GPUs SP

1 GPU DP
2 GPUs DP
4 GPUs DP

103 104 105 106 107 108 109

Vector Length

101

102

103

Device
CPU
GPU

5000 10000 15000 20000 25000 30000
Width of Image

0

250

500

750

1000

1250

M
Pi

xe
l/

s

CPU
GPU

TASK 0

Member of the Helmholtz Association 28 May 2019 Slide 7 118

Primer on Parallel Scaling
Amdahl’s Law

Possible maximum speedup for
N parallel processors
Total Time t = tserial + tparallel
N Processors t(N) = ts + tp/N

Speedup s(N) = t/t(N) = ts+tp
ts+tp/N

1 2 4 8 16 32 64 128 256 512 1024 2048 4096
Number of Processors

0

20

40

60

80

100

Sp
ee

du
p

Parallel Portion: 50%
Parallel Portion: 75%
Parallel Portion: 90%
Parallel Portion: 95%
Parallel Portion: 99%

Member of the Helmholtz Association 28 May 2019 Slide 8 118

Primer on Parallel Scaling II
Gustafson-Barsis’s Law

[…] speedup should be
measured by scaling the
problem to the number
of processors, not fixing
problem size.
– John Gustafson

256512 1024 2048 4096
Number of Processors

0

1000

2000

3000

4000

Sp
ee

du
p

Serial Portion: 1%
Serial Portion: 10%
Serial Portion: 50%
Serial Portion: 75%
Serial Portion: 90%
Serial Portion: 99%

Member of the Helmholtz Association 28 May 2019 Slide 9 118

! Parallelism

Parallel programming is not easy!

Things to consider:
Is my application computationally intensive enough?
What are the levels of parallelism?
Howmuch data needs to be transferred?
Is the gainworth the pain?

Member of the Helmholtz Association 28 May 2019 Slide 10 118

Possibilities

Different levels of closeness to GPUwhen GPU-programming, which can ease the pain…
OpenACC
OpenMP
Thrust
PyCUDA
CUDA Fortran
CUDA
OpenCL

Member of the Helmholtz Association 28 May 2019 Slide 11 118

Primer on GPU Computing

Application

Libraries Directives
Programming
LanguagesOpenACC

Drop-in
Acceleration

Easy
Acceleration

Flexible
Acceleration

Member of the Helmholtz Association 28 May 2019 Slide 12 118

About OpenACC
History
2011 OpenACC 1.0 specification is released

NVIDIA, Cray, PGI, CAPS
2013 OpenACC 2.0: More functionality, portability
2015 OpenACC 2.5: Enhancements, clarifications
2017 OpenACC 2.6: Deep copy, …

2018 OpenACC 2.7: Clarifications, more host, …

→ https://www.openacc.org/ (see also: Best practice guide)

Support
Compiler: PGI, GCC, Clang, Sunway
Languages: C/C++, Fortran

Member of the Helmholtz Association 28 May 2019 Slide 13 118

https://www.openacc.org/sites/default/files/inline-files/OpenACC_1_0_specification.pdf
https://www.openacc.org/sites/default/files/inline-files/OpenACC_2_0_specification.pdf
https://www.openacc.org/sites/default/files/inline-files/OpenACC_2pt5.pdf
https://www.openacc.org/sites/default/files/inline-files/OpenACC.2.6.final.pdf
https://www.openacc.org/sites/default/files/inline-files/OpenACC.2.7.pdf
https://www.openacc.org/blog/whats-new-openacc-27
https://www.openacc.org/
http://www.openacc.org/sites/default/files/inline-files/OpenACC_Programming_Guide_0.pdf

Open{MP↔ACC}
Everything’s connected

OpenACCmodeled after OpenMP …
…but specific for accelerators
Might eventually be absorbed into OpenMP
OpenACCmore descriptive, OpenMPmore prescriptive
Basic principle same: Fork/join model
Master thread launches parallel child threads; merge after execution

master masterfo
rk

parallel
jo
in

OpenMP

master masterfo
rk

parallel

jo
in

OpenACC

Member of the Helmholtz Association 28 May 2019 Slide 14 118

Modus Operandi
Three-step program

1 Annotate code with directives, indicating parallelism
2 OpenACC-capable compiler generates accelerator-specific code
3 $uccess

Member of the Helmholtz Association 28 May 2019 Slide 15 118

1 Directives
pragmatic

Compiler directives state intent to compiler
C/C++
#pragma acc kernels
for (int i = 0; i < 23; i++)
// ...

Fortran
!$acc kernels
do i = 1, 24
! ...
!$acc end kernels

Ignored by compiler which does not understand OpenACC
High level programmingmodel for many-core machines, especially accelerators
OpenACC: Compiler directives, library routines, environment variables
Portable across host systems and accelerator architectures

Member of the Helmholtz Association 28 May 2019 Slide 16 118

2 Compiler
Simple and abstracted

Compiler support
PGI Best performance, great support, free
GCC Actively performance-improved, OSS
Clang First alpha version

Trust compiler to generate intended parallelism; always check status output!
No need to know ins’n’outs of accelerator; leave it to expert compiler engineers⋆

One code can target different accelerators: GPUs, or evenmulti-core CPUs→ Portability

⋆: Eventually you want to tune for device; but that’s possible

Member of the Helmholtz Association 28 May 2019 Slide 17 118

3 $uccess
Iteration is key

Serial to parallel: fast
Serial to fast parallel: more time needed
Start simple→ refine

⇒ Productivity
Because of generalness: Sometimes not last bit of hardware performance accessible
But: Use OpenACC together with other accelerator-targeting techniques (CUDA, libraries,
…)

Expose
Parallelism

CompileMeasure

Member of the Helmholtz Association 28 May 2019 Slide 18 118

OpenACC Accelerator Model
For computation andmemory spaces

Main program executes on host
Device code is transferred to accelerator
Execution on accelerator is started
Host waits until return (except: async)

Two separate memory spaces; data
transfers back and forth

Transfers hidden from programmer
Memories not coherent!
Compiler helps; GPU runtime helps

Start main
program

Wait for code

Run code

Finish code
Return to host

Transfer

W
ai
t

Host Memory Device
Memory

DMA Transfers

Member of the Helmholtz Association 28 May 2019 Slide 19 118

OpenACC Programming Model
A binary perspective

OpenACC interpretation needs to be activated as compile flag
PGI pgcc -acc [-ta=tesla|-ta=multicore]
GCC gcc -fopenacc
→ Ignored by non-OpenACC compiler!

Additional flags possible to improve/modify compilation
-ta=tesla:cc70 Use compute capability 7.0

-ta=tesla:lineinfo Add source code correlation into binary
-ta=tesla:managed Use unified memory

-fopenacc-dim=geom Use geom configuration for threads

Member of the Helmholtz Association 28 May 2019 Slide 20 118

A Glimpse of OpenACC
#pragma acc data copy(x[0:N],y[0:N])
#pragma acc parallel loop
{

for (int i=0; i<N; i++) {
x[i] = 1.0;
y[i] = 2.0;

}
for (int i=0; i<N; i++) {

y[i] = i*x[i]+y[i];
}

}

Compiler directives, ignored by incapable compilers
Syntax Fortran
!$acc directive [clause, [, clause] ...]
!$acc end directive

Member of the Helmholtz Association 28 May 2019 Slide 21 118

OpenACC by Example

Member of the Helmholtz Association 28 May 2019 Slide 22 118

Parallelization Workflow

Identify available parallelism

Parallelize loops with OpenACC

Optimize data locality

Optimize loop performance

Member of the Helmholtz Association 28 May 2019 Slide 23 118

Jacobi Solver
Algorithmic description

Example for acceleration: Jacobi solver
Iterative solver, converges to correct value
Each iteration step: compute average of neighboring points
Example: 2D Poisson equation: ∇2A(x, y) = B(x, y)

Ai,j+1

Ai−1,j

Ai,j−1

Ai+1,j

Data Point
Boundary Point
Stencil

Ak+1(i, j) = −
1
4
(B(i, j)− (Ak(i− 1, j) + Ak(i, j+ 1),+Ak(i+ 1, j) + Ak(i, j− 1)))

Member of the Helmholtz Association 28 May 2019 Slide 24 118

Jacobi Solver
Source code

while (error > tol && iter < iter_max) {
error = 0.0;
for (int ix = ix_start; ix < ix_end; ix++) {

for (int iy = iy_start; iy < iy_end; iy++) {
Anew[iy*nx+ix] = -0.25 * (rhs[iy*nx+ix] -

(A[iy*nx+ix+1] + A[iy*nx+ix-1]
+ A[(iy-1)*nx+ix] + A[(iy+1)*nx+ix]));

error = fmaxr(error, fabsr(Anew[iy*nx+ix]-A[iy*nx+ix]));
}}
for (int iy = iy_start; iy < iy_end; iy++) {

for(int ix = ix_start; ix < ix_end; ix++) {
A[iy*nx+ix] = Anew[iy*nx+ix];

}}
for (int ix = ix_start; ix < ix_end; ix++) {

A[0*nx+ix] = A[(ny-2)*nx+ix];
A[(ny-1)*nx+ix] = A[1*nx+ix];

}
// same for iy
iter++;

}

Iterate until converged

Iterate across
matrix elements

Calculate new value
from neighbors

Accumulate error

Swap input/output

Set boundary conditions

Member of the Helmholtz Association 28 May 2019 Slide 25 118

Parallelization Workflow

Identify available parallelism

Parallelize loops with OpenACC

Optimize data locality

Optimize loop performance

Member of the Helmholtz Association 28 May 2019 Slide 26 118

Profiling
Profile

[…] premature optimization is the root of all evil.
Yet we should not pass up our [optimization] opportunities […]
– Donald Knuth [6]

Investigate hot spots of your program!
→ Profile!

Many tools, many levels: perf, PAPI, Score-P, Intel Advisor, NVIDIA Visual Profiler, …
Here: Examples from PGI

Member of the Helmholtz Association 28 May 2019 Slide 27 118

Identify Parallelism
Generate Profile

Use pgprof to analyze unaccelerated version of Jacobi solver
Investigate!

Task 1: Analyze Application

Change to Task1/ directory
Reset to original environment: module purge && module load PGI

Compile: make task1
Usually, compile just with make (but this exercise is special)
Submit profiling run to the batch system: make task1_profile
Study srun call and pgprof call; try to understand

??? Where is hotspot? Which parts should be accelerated?

TASK 1

Member of the Helmholtz Association 28 May 2019 Slide 28 118

Profile of Application
Info during compilation

$ pgcc -DUSE_DOUBLE -Minfo=all,intensity -fast -Minfo=ccff -Mprof=ccff
poisson2d_reference.o poisson2d.c -o poisson2d
poisson2d.c:
main:

68, Generated vector simd code for the loop
FMA (fused multiply-add) instruction(s) generated

98, FMA (fused multiply-add) instruction(s) generated
105, Loop not vectorized: data dependency
123, Loop not fused: different loop trip count

Loop not vectorized: data dependency
Loop unrolled 8 times

Automated optimization of compiler, due to -fast
Vectorization, FMA, unrolling

Member of the Helmholtz Association 28 May 2019 Slide 29 118

Profile of Application
Info during run

$ pgprof --cpu-profiling on [...] ./poisson2d
======== CPU profiling result (flat):
Time(%) Time Name
59.24% 930ms main (poisson2d.c:128 0x372)
12.10% 190ms main (poisson2d.c:128 0x38c)
4.46% 70ms main (poisson2d.c:128 0x37e)
3.18% 50ms main (poisson2d.c:128 0x394)
2.55% 40ms main (poisson2d.c:128 0x378)
1.91% 30ms __fsd_exp_fma3 (0x8ea210c4)
1.91% 30ms __c_mcopy8_sky (0x8e60f197)

======== Data collected at 100Hz frequency

≈ 70% in main()
Since everything is in main – limited helpfulness
Let’s look into main!

Member of the Helmholtz Association 28 May 2019 Slide 30 118

Code Independency Analysis
Independence is key

while (error > tol && iter < iter_max) {
error = 0.0;
for (int ix = ix_start; ix < ix_end; ix++) {

for (int iy = iy_start; iy < iy_end; iy++) {
Anew[iy*nx+ix] = -0.25 * (rhs[iy*nx+ix] -

(A[iy*nx+ix+1] + A[iy*nx+ix-1]
+ A[(iy-1)*nx+ix] + A[(iy+1)*nx+ix]));

error = fmaxr(error, fabsr(Anew[iy*nx+ix]-A[iy*nx+ix]));
}}
for (int iy = iy_start; iy < iy_end; iy++) {

for(int ix = ix_start; ix < ix_end; ix++) {
A[iy*nx+ix] = Anew[iy*nx+ix];

}}
for (int ix = ix_start; ix < ix_end; ix++) {

A[0*nx+ix] = A[(ny-2)*nx+ix];
A[(ny-1)*nx+ix] = A[1*nx+ix];

}
// same for iy
iter++;

}

Data dependency
between iterations

Independent loop
iterations

Independent loop
iterations

Independent loop
iterations

Member of the Helmholtz Association 28 May 2019 Slide 31 118

Parallelization Workflow

Identify available parallelism

Parallelize loops with OpenACC

Optimize data locality

Optimize loop performance

Member of the Helmholtz Association 28 May 2019 Slide 32 118

Parallel Loops: Parallel
Maybe the secondmost important directive

Programmer identifies block containing parallelism
→ compiler generates parallel code (kernel)
Program launch creates gangs of parallel threads on parallel device
Implicit barrier at end of parallel region
Each gang executes same code sequentially

 OpenACC: parallel

#pragma acc parallel [clause, [, clause] ...] newline
{structured block}

Member of the Helmholtz Association 28 May 2019 Slide 33 118

Parallel Loops: Parallel
Clauses

Diverse clauses to augment the parallel region
private(var) A copy of variables var is made for each gang

firstprivate(var) Same as private, except varwill initialized with value from host
if(cond) Parallel region will execute on accelerator only if cond is true

reduction(op:var) Reduction is performed on variable varwith operation op; supported:
+ * max min …

async[(int)] No implicit barrier at end of parallel region

Member of the Helmholtz Association 28 May 2019 Slide 34 118

Parallel Loops: Loops
Maybe the third most important directive

Programmer identifies loop eligible for parallelization
Directive must be directly before loop
Optional: Describe type of parallelism

 OpenACC: loop

#pragma acc loop [clause, [, clause] ...] newline
{structured block}

Member of the Helmholtz Association 28 May 2019 Slide 35 118

Parallel Loops: Loops
Clauses

independent Iterations of loop are data-independent (implied if in parallel region
(and no seq or auto))

collapse(int) Collapse int tightly-nested loops
seq This loop is to be executed sequentially (not parallel)

tile(int[,int]) Split loops into loops over tiles of the full size
auto Compiler decides what to do

Member of the Helmholtz Association 28 May 2019 Slide 36 118

Parallel Loops: Parallel Loops
Maybe themost important directive

Combined directive: shortcut
Because its used so often
Any clause that is allowed on parallel or loop allowed
Restriction: May not appear in body of another parallel region

 OpenACC: parallel loop

#pragma acc parallel loop [clause, [, clause] ...]

Member of the Helmholtz Association 28 May 2019 Slide 37 118

Parallel Loops Example

double sum = 0.0;
#pragma acc parallel loop
for (int i=0; i<N; i++) {

x[i] = 1.0;
y[i] = 2.0;

}
#pragma acc parallel loop reduction(+:sum)
{
for (int i=0; i<N; i++) {

y[i] = i*x[i]+y[i];
sum+=y[i];

}
}

Kernel 1

Kernel 2

Member of the Helmholtz Association 28 May 2019 Slide 38 118

Parallel Jacobi
Add parallelism

Add OpenACC parallelism tomain double loop in Jacobi solver source code
Profile code

→ Congratulations, you are a GPU developer!
Task 2: A First Parallel Loop

Change to Task2/ directory
Compile: make
Submit parallel run to the batch system: make run
Adapt the srun call and run with other number of iterations, matrix sizes
Profile: make profile
pgprof or nvprof is prefix to call to poisson2d

TASK 2

Member of the Helmholtz Association 28 May 2019 Slide 39 118

Parallel Jacobi
Source Code

110 #pragma acc parallel loop reduction(max:error)
111 for (int ix = ix_start; ix < ix_end; ix++)
112 {
113 for (int iy = iy_start; iy < iy_end; iy++)
114 {
115 Anew[iy*nx+ix] = -0.25 * (rhs[iy*nx+ix] - (A[iy*nx+ix+1] + A[iy*nx+ix-1]
116 + A[(iy-1)*nx+ix] +

A[(iy+1)*nx+ix]));↪→

117 error = fmaxr(error, fabsr(Anew[iy*nx+ix]-A[iy*nx+ix]));
118 }
119 }

Member of the Helmholtz Association 28 May 2019 Slide 40 118

Parallel Jacobi
Compilation result

$ make
pgcc -DUSE_DOUBLE -Minfo=accel -fast -acc -ta=tesla:cc70,managed poisson2d.c
poisson2d_reference.o -o poisson2d
poisson2d.c:
main:

109, Accelerator kernel generated
Generating Tesla code
109, Generating reduction(max:error)
110, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */
112, #pragma acc loop seq

109, Generating implicit copyin(A[:],rhs[:])
Generating implicit copyout(Anew[:])

112, Complex loop carried dependence of Anew-> prevents parallelization
Loop carried dependence of Anew-> prevents parallelization
Loop carried backward dependence of Anew-> prevents vectorization

Member of the Helmholtz Association 28 May 2019 Slide 41 118

Parallel Jacobi
Run result

$ make run
PGI_ACC_POOL_ALLOC=0 srun --gres=gpu:4 --pty ./poisson2d
Jacobi relaxation calculation: max 500 iterations on 2048 x 2048 mesh
Calculate reference solution and time with serial CPU execution.

0, 0.249999
100, 0.249760
200, 0...

Calculate current execution.
0, 0.249999

100, 0.249760
200, 0...

2048x2048: Ref: 61.7959 s, This: 18.4224 s, speedup: 3.35

Member of the Helmholtz Association 28 May 2019 Slide 42 118

pgprof / nvprof
NVIDIA’s command line profiler

Profiles applications, mainly for NVIDIA GPUs, but also CPU code
GPU: CUDA kernels, API calls, OpenACC
pgprof vs nvprof: Twins with other configurations
Generate concise performance reports, full timelines; measure events andmetrics
(hardware counters)

⇒ Powerful tool for GPU application analysis

→ http://docs.nvidia.com/cuda/profiler-users-guide/

Member of the Helmholtz Association 28 May 2019 Slide 43 118

http://docs.nvidia.com/cuda/profiler-users-guide/

Profile of Jacobi
With pgprof

$ make profile
==116606== PGPROF is profiling process 116606, command: ./poisson2d 10
==116606== Profiling application: ./poisson2d 10
Jacobi relaxation calculation: max 10 iterations on 2048 x 2048 mesh
Calculate reference solution and time with serial CPU execution.
2048x2048: Ref: 0.8378 s, This: 0.2716 s, speedup: 3.08
==116606== Profiling result:
GPU activities: 99.97% 227.22ms 10 22.722ms 20.956ms 35.399ms main_109_gpu

0.01% 25.472us 10 2.5470us 2.3680us 3.1680us [CUDA memcpy DtoH]
0.01% 22.112us 10 2.2110us 1.9840us 2.9440us main_109_gpu__red
0.01% 19.360us 10 1.9360us 1.7600us 2.3040us [CUDA memset]

==116606== Unified Memory profiling result:
Device "Tesla V100-SXM2-16GB (0)"

Count Avg Size Min Size Max Size Total Size Total Time Name
5895 117.69KB 4.0000KB 0.9961MB 677.5000MB 76.01850ms Host To Device
3930 168.06KB 4.0000KB 0.9961MB 645.0000MB 56.85597ms Device To Host
2032 - - - - 222.6040ms Gpu page fault groups

Total CPU Page faults: 2361

Member of the Helmholtz Association 28 May 2019 Slide 44 118

Profile of Jacobi
With pgprof

$ make profile
==116606== PGPROF is profiling process 116606, command: ./poisson2d 10
==116606== Profiling application: ./poisson2d 10
Jacobi relaxation calculation: max 10 iterations on 2048 x 2048 mesh
Calculate reference solution and time with serial CPU execution.
2048x2048: Ref: 0.8378 s, This: 0.2716 s, speedup: 3.08
==116606== Profiling result:
GPU activities: 99.97% 227.22ms 10 22.722ms 20.956ms 35.399ms main_109_gpu

0.01% 25.472us 10 2.5470us 2.3680us 3.1680us [CUDA memcpy DtoH]
0.01% 22.112us 10 2.2110us 1.9840us 2.9440us main_109_gpu__red
0.01% 19.360us 10 1.9360us 1.7600us 2.3040us [CUDA memset]

==116606== Unified Memory profiling result:
Device "Tesla V100-SXM2-16GB (0)"

Count Avg Size Min Size Max Size Total Size Total Time Name
5895 117.69KB 4.0000KB 0.9961MB 677.5000MB 76.01850ms Host To Device
3930 168.06KB 4.0000KB 0.9961MB 645.0000MB 56.85597ms Device To Host
2032 - - - - 222.6040ms Gpu page fault groups

Total CPU Page faults: 2361

Only one function is pa
rallelized!

Let’s do the rest!

Member of the Helmholtz Association 28 May 2019 Slide 44 118

More Parallelism: Kernels
More freedom for compiler

Kernels directive: second way to expose parallelism
Regionmay contain parallelism
Compiler determines parallelization opportunities

→ More freedom for compiler
Rest: Same as for parallel

 OpenACC: kernels

#pragma acc kernels [clause, [, clause] ...]

Member of the Helmholtz Association 28 May 2019 Slide 45 118

Kernels Example

double sum = 0.0;
#pragma acc kernels
{
for (int i=0; i<N; i++) {

x[i] = 1.0;
y[i] = 2.0;

}
for (int i=0; i<N; i++) {

y[i] = i*x[i]+y[i];
sum+=y[i];

}
}

Kernels created here

Member of the Helmholtz Association 28 May 2019 Slide 46 118

kernels vs. parallel
Both approaches equally valid; can perform equally well
kernels

Compiler performs parallel analysis
Can cover large area of code with single directive
Gives compiler additional leeway

parallel
Requires parallel analysis by programmer
Will also parallelize what compiler maymiss
More explicit
Similar to OpenMP

Both regions may not contain other kernels/parallel regions
No braunching into or out
Programmust not depend on order of evaluation of clauses
At most: One if clause

Member of the Helmholtz Association 28 May 2019 Slide 47 118

Parallel Jacobi II
Addmore parallelism

Add OpenACC parallelism to other loops of while (L:123 – L:141)
Use either kernels or parallel
Do they perform equally well?

Task 3: More Parallel Loops

Change to Task3/ directory
Compile: make
Study the compiler output!
Submit parallel run to the batch system: make run

? What’s your speed-up?

TASK 3

Member of the Helmholtz Association 28 May 2019 Slide 48 118

Parallel Jacobi
Source Code

while (error > tol && iter < iter_max) {
error = 0.0;
#pragma acc parallel loop reduction(max:error)
for (int ix = ix_start; ix < ix_end; ix++) {

for (int iy = iy_start; iy < iy_end; iy++) {
Anew[iy*nx+ix] = -0.25 * (rhs[iy*nx+ix] -

(A[iy*nx+ix+1] + A[iy*nx+ix-1]
+ A[(iy-1)*nx+ix] + A[(iy+1)*nx+ix]));

error = fmaxr(error, fabsr(Anew[iy*nx+ix]-A[iy*nx+ix]));
}}
#pragma acc parallel loop
for (int iy = iy_start; iy < iy_end; iy++) {

for(int ix = ix_start; ix < ix_end; ix++) {
A[iy*nx+ix] = Anew[iy*nx+ix];

}}
#pragma acc parallel loop
for (int ix = ix_start; ix < ix_end; ix++) {

A[0*nx+ix] = A[(ny-2)*nx+ix];
A[(ny-1)*nx+ix] = A[1*nx+ix];

}
// same for iy
iter++;

}

Member of the Helmholtz Association 28 May 2019 Slide 49 118

Parallel Jacobi II
Compilation result

$ make
pgcc -c -DUSE_DOUBLE -Minfo=accel -fast -acc -ta=tesla:cc70,managed
poisson2d_reference.c -o poisson2d_reference.o

poisson2d.c:
main:

109, Accelerator kernel generated
Generating Tesla code

109, Generating reduction(max:error)
110, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */
112, #pragma acc loop seq

109, ...
121, Accelerator kernel generated

Generating Tesla code
124, #pragma acc loop gang /* blockIdx.x */
126, #pragma acc loop vector(128) /* threadIdx.x */

121, Generating implicit copyin(Anew[:])
Generating implicit copyout(A[:])

126, Loop is parallelizable
133, Accelerator kernel genera...

Member of the Helmholtz Association 28 May 2019 Slide 50 118

Parallel Jacobi II
Run result

$ make run
PGI_ACC_POOL_ALLOC=0 srun --gres=gpu:4 --pty ./poisson2d
Jacobi relaxation calculation: max 500 iterations on 2048 x 2048 mesh
Calculate reference solution and time with serial CPU execution.

0, 0.249999
100, 0.249760
200, 0...

Calculate current execution.
0, 0.249999

100, 0.249760
200, 0...

2048x2048: Ref: 61.6953 s, This: 0.4035 s, speedup: 152.90

Member of the Helmholtz Association 28 May 2019 Slide 51 118

Parallel Jacobi II
Run result

$ make run
PGI_ACC_POOL_ALLOC=0 srun --gres=gpu:4 --pty ./poisson2d
Jacobi relaxation calculation: max 500 iterations on 2048 x 2048 mesh
Calculate reference solution and time with serial CPU execution.

0, 0.249999
100, 0.249760
200, 0...

Calculate current execution.
0, 0.249999

100, 0.249760
200, 0...

2048x2048: Ref: 61.6953 s, This: 0.4035 s, speedup: 152.90

Done?!

Member of the Helmholtz Association 28 May 2019 Slide 51 118

OpenACC by Example
Data Transfers

Member of the Helmholtz Association 28 May 2019 Slide 52 118

Automatic Data Transfers

Up to now: We did not care about data transfers
Compiler and runtime care
Magic keyword: -ta=tesla:managed
Only feature of (recent) NVIDIA GPUs!

Member of the Helmholtz Association 28 May 2019 Slide 53 118

CPU and GPUMemory
Location, location, location

CPUMemory

CPU

DRAM

Scheduler

. . .

Interconnect

L2

At the Beginning CPU and GPU memory very distinct, own addresses

CUDA 4.0 Unified Virtual Addressing: pointer from same address pool, but
data copy manual

CUDA 6.0 Unified Memory*: Data copy by driver, but whole data at once
CUDA 8.0 Unified Memory (truly): Data copy by driver, page faults

on-demand initiate data migrations (Pascal)
Future* Address Translation Service: Omit page faults

Member of the Helmholtz Association 28 May 2019 Slide 54 118

CPU and GPUMemory
Location, location, location

CPUMemory

CPU

DRAM

Scheduler

. . .

Interconnect

L2

Unified
Memory

At the Beginning CPU and GPU memory very distinct, own addresses
CUDA 4.0 Unified Virtual Addressing: pointer from same address pool, but

data copy manual
CUDA 6.0 Unified Memory*: Data copy by driver, but whole data at once
CUDA 8.0 Unified Memory (truly): Data copy by driver, page faults

on-demand initiate data migrations (Pascal)
Future* Address Translation Service: Omit page faults

Member of the Helmholtz Association 28 May 2019 Slide 54 118

Portability
Managedmemory: Only NVIDIA GPU feature
Great OpenACC features: Portability

→ Code should also be fast without -ta=tesla:managed!
Let’s remove it from compile flags!

$ make
pgcc -c -DUSE_DOUBLE -Minfo=accel -fast -acc -ta=tesla:cc70
poisson2d_reference.c -o poisson2d_reference.o
poisson2d.c:
PGC-S-0155-Compiler failed to translate accelerator region (see -Minfo messages): Could not
find allocated-variable index for symbol - rhs (poisson2d.c: 109)

...
PGC/x86-64 Linux 19.3-0: compilation aborted

Member of the Helmholtz Association 28 May 2019 Slide 55 118

Copy Statements
Compiler implicitly created copy clauses to copy data to device

134, Generating implicit copyin(A[:])
Generating implicit copyout(A[nx*(ny-1)+1:nx-2])

It couldn’t determine length of copied data…
…but before: no problem – Unified Memory!
Now: Problem! We need to give that information! (see also later)

 OpenACC: copy

#pragma acc parallel copy(A[start:end])
Also: copyin(B[s:e]) copyout(C[s:e]) present(D[s:e]) create(E[s:e])

Member of the Helmholtz Association 28 May 2019 Slide 56 118

Data Copies
Get that data!

Add copy clause to parallel regions
Check correctness with Visual Profiler

Task 4: Data Copies

Change to Task4/ directory
Work on TODOs
Compile: make
Submit parallel run to the batch system: make run
Generate profile with make profile_tofile

? What’s your speed-up?

TASK 4

Member of the Helmholtz Association 28 May 2019 Slide 57 118

Data Copies
Compiler Output

$ make
pgcc -DUSE_DOUBLE -Minfo=accel -fast -acc -ta=tesla:cc70 poisson2d.c poisson2d_reference.o -o poisson2d
poisson2d.c:
main:

109, Generating copy(A[:ny*nx],Anew[:ny*nx],rhs[:ny*nx])
...

121, Generating copy(Anew[:ny*nx],A[:ny*nx])
...

131, Generating copy(A[:ny*nx])
Accelerator kernel generated
Generating Tesla code

132, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */
137, Generating copy(A[:ny*nx])

Accelerator kernel generated
Generating Tesla code

138, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */

Member of the Helmholtz Association 28 May 2019 Slide 58 118

Data Copies
Run Result

$ make run
srun --gres=gpu:4 --pty ./poisson2d
Jacobi relaxation calculation: max 500 iterations on 2048 x 2048 mesh
Calculate reference solution and time with serial CPU execution.

0, 0.249999
100, 0.249760
200, 0...

Calculate current execution.
0, 0.249999

100, 0.249760
200, 0...

2048x2048: Ref: 68.8658 s, This: 48.7855 s, speedup: 1.41

Slower?!
Why?

Member of the Helmholtz Association 28 May 2019 Slide 59 118

PGI/NVIDIA Visual Profiler

GUI tool accompanying pgprof / nvprof
PGI Start pgprofwithout parameters

NVIDIA Start nvvp
Timeline view of all things GPU
→ Study stages and interplay of application
Interactive or with input from command line profilers
View launch and run configurations
Guided and unguided analysis

→ https://developer.nvidia.com/nvidia-visual-profiler

Member of the Helmholtz Association 28 May 2019 Slide 60 118

https://developer.nvidia.com/nvidia-visual-profiler

PGI/NVIDIA Visual Profiler
Overview

Member of the Helmholtz Association 28 May 2019 Slide 61 118

PGI/NVIDIA Visual Profiler
Zoom in to kernel calls

Member of the Helmholtz Association 28 May 2019 Slide 61 118

Parallelization Workflow

Identify available parallelism

Parallelize loops with OpenACC

Optimize data locality

Optimize loop performance

Member of the Helmholtz Association 28 May 2019 Slide 62 118

Analyze Jacobi Data Flow
In code
while (error > tol && iter < iter_max) {

error = 0.0;

A, Anew resident on host

A, Anew resident on host

iter++
}

#pragma acc parallel loop

A, Anew resident on device
for (int ix = ix_start; ix < ix_end; ix++) {

for (int iy = iy_start; iy < iy_end; iy++) {
// ...

}}

A, Anew resident on device

copy

Copies are done
in each iteration!

Member of the Helmholtz Association 28 May 2019 Slide 63 118

Analyze Jacobi Data Flow
In code
while (error > tol && iter < iter_max) {

error = 0.0;

A, Anew resident on host

A, Anew resident on host

iter++
}

#pragma acc parallel loop

A, Anew resident on device
for (int ix = ix_start; ix < ix_end; ix++) {

for (int iy = iy_start; iy < iy_end; iy++) {
// ...

}}

A, Anew resident on device

copy

Copies are done
in each iteration!

Member of the Helmholtz Association 28 May 2019 Slide 63 118

Analyze Jacobi Data Flow
Summary

By now, whole algorithm is using GPU
At beginning of while loop, data copied to device; at end of loop, coped by to host
Depending on type of parallel regions in while loop: Data copied in between regions as
well
Slow! Data copies are expensive!

Member of the Helmholtz Association 28 May 2019 Slide 64 118

Data Regions
Tomanually specify data locations

Defines region of code in which data remains on device
Data is shared among all kernels in region
Explicit data transfers

 OpenACC: data

#pragma acc data [clause, [, clause] ...]

Member of the Helmholtz Association 28 May 2019 Slide 65 118

Data Regions
Clauses

Clauses to augment the data regions
copy(var) Allocates memory of var on GPU, copies data to GPU at beginning of region,

copies data to host at end of region
Specifies size of var: var[lowerBound:size]

copyin(var) Allocates memory of var on GPU, copies data to GPU at beginning of region
copyout(var) Allocates memory of var on GPU, copies data to host at end of region
create(var) Allocates memory of var on GPU
present(var) Data of var is not copies automatically to GPU but considered present

Member of the Helmholtz Association 28 May 2019 Slide 66 118

Data Region Example

#pragma acc data copyout(y[0:N]) create(x[0:N])
{

double sum = 0.0;
#pragma acc parallel loop
for (int i=0; i<N; i++) {

x[i] = 1.0;
y[i] = 2.0;

}
#pragma acc parallel loop
for (int i=0; i<N; i++) {

y[i] = i*x[i]+y[i];
}

}

Member of the Helmholtz Association 28 May 2019 Slide 67 118

Data Regions II
Looser regions: enter data directive

Define data regions, but not for structured block
Closest to cudaMemcpy()
Still, explicit data transfers

 OpenACC: enter data

#pragma acc enter data [clause, [, clause] ...]
#pragma acc exit data [clause, [, clause] ...]

Member of the Helmholtz Association 28 May 2019 Slide 68 118

Data Region
More parallelism, Data locality

Add data regions such that all data resides on device during iterations
Optional: See your success in Visual Profiler

Task 5: Data Region

Change to Task5/ directory
Work on TODOs
Compile: make
Submit parallel run to the batch system: make run

? What’s your speed-up?
Generate profile with make profile_tofile

TASK 5

Member of the Helmholtz Association 28 May 2019 Slide 69 118

Parallel Jacobi II
Source Code

105 #pragma acc data copy(A[0:nx*ny]) copyin(rhs[0:nx*ny]) create(Anew[0:nx*ny])
106 while (error > tol && iter < iter_max)
107 {
108 error = 0.0;
109
110 // Jacobi kernel
111 #pragma acc parallel loop reduction(max:error)
112 for (int ix = ix_start; ix < ix_end; ix++)
113 {
114 for (int iy = iy_start; iy < iy_end; iy++)
115 {
116 Anew[iy*nx+ix] = -0.25 * (rhs[iy*nx+ix] - (A[iy*nx+ix+1] + A[iy*nx+ix-1]
117 + A[(iy-1)*nx+ix] + A[(iy+1)*nx+ix]));
118 error = fmaxr(error, fabsr(Anew[iy*nx+ix]-A[iy*nx+ix]));
119 }
120 }
121
122 // A <-> Anew
123 #pragma acc parallel loop
124 for (int iy = iy_start; iy < iy_end; iy++)
125 // …
126 }

Member of the Helmholtz Association 28 May 2019 Slide 70 118

Data Region
Compiler Output

$ make
pgcc -DUSE_DOUBLE -Minfo=accel -fast -acc -ta=tesla:cc70 poisson2d.c
poisson2d_reference.o -o poisson2d
poisson2d.c:
main:

104, Generating copyin(rhs[:ny*nx])
Generating create(Anew[:ny*nx])
Generating copy(A[:ny*nx])

110, Accelerator kernel generated
Generating Tesla code
110, Generating reduction(max:error)
111, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */
113, #pragma acc loop seq
...

Member of the Helmholtz Association 28 May 2019 Slide 71 118

Data Region
Run Result

$ make run
Jacobi relaxation calculation: max 500 iterations on 2048 x 2048 mesh
Calculate reference solution and time with serial CPU execution.

0, 0.249999
100, 0.249760
200, 0...

Calculate current execution.
0, 0.249999

100, 0.249760
200, 0...

2048x2048: Ref: 69.0761 s, This: 0.4004 s, speedup: 172.53

Wow!

But can we be even be
tter?

Member of the Helmholtz Association 28 May 2019 Slide 72 118

OpenACC by Example
Optimize Loop Performance

Member of the Helmholtz Association 28 May 2019 Slide 73 118

Parallelization Workflow

Identify available parallelism

Parallelize loops with OpenACC

Optimize data locality

Optimize loop performance

Member of the Helmholtz Association 28 May 2019 Slide 74 118

Understanding Compiler Output

110, Accelerator kernel generated
Generating Tesla code
110, Generating reduction(max:error)
111, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */
114, #pragma acc loop seq
114, Complex loop carried dependence of Anew-> prevents parallelization

110 #pragma acc parallel loop reduction(max:error)
111 for (int ix = ix_start; ix < ix_end; ix++)
112 {
113 // Inner loop
114 for (int iy = iy_start; iy < iy_end; iy++)
115 {
116 Anew[iy*nx+ix] = -0.25 * (rhs[iy*nx+ix] - (A[iy*nx+ix+1] + A[iy*nx+ix-1] +

A[(iy-1)*nx+ix] + A[(iy+1)*nx+ix]));↪→
117 error = fmaxr(error, fabsr(Anew[iy*nx+ix]-A[iy*nx+ix]));
118 }
119 }

Member of the Helmholtz Association 28 May 2019 Slide 75 118

Understanding Compiler Output

110, Accelerator kernel generated
Generating Tesla code
110, Generating reduction(max:error)
111, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */
114, #pragma acc loop seq
114, Complex loop carried dependence of Anew-> prevents parallelization

Outer loop: Parallelism with gang and vector
Inner loop: Sequentially per thread (#pragma acc loop seq)
Inner loop was never parallelized!
Rule of thumb: Expose as much parallelism as possible

Member of the Helmholtz Association 28 May 2019 Slide 75 118

OpenACC Parallelism
3 Levels of Parallelism

Gang

$

Workers

Vector

Vector
Vector threads work in lockstep
(SIMD/SIMT parallelism)

Worker
Has 1 or more vector; workers
share common resource (cache)

Gang
Has 1 or more workers; multiple gangs
work independently from each other

Member of the Helmholtz Association 28 May 2019 Slide 76 118

CUDA Parallelism
CUDA Execution Model

Software Hardware

Thread

Scalar
Processor

Threads executed by scalar processors (CUDA
cores)

Thread
Block Multiprocessor

Thread blocks: Executed onmultiprocessors (SM)
Do not migrate
Several concurrent thread blocks can reside on
multiprocessor
Limit: Multiprocessor resources (register file;
sharedmemory)

Grid

. . .

Device

Kernel launched as grid of thread blocks
Blocks, grids: Multiple dimensions

Member of the Helmholtz Association 28 May 2019 Slide 77 118

FromOpenACC to CUDA
map(||acc,||<<<>>>)

In general: Compiler free to do what it thinks is best
Usually
gang Mapped to blocks (coarse grain)

worker Mapped to threads (fine grain)
vector Mapped to threads (fine SIMD/SIMT)

seq No parallelism; sequential
Exact mapping compiler dependent
Performance tips

Use vector size divisible by 32
Block size: num_workers× vector_length

Member of the Helmholtz Association 28 May 2019 Slide 78 118

Declaration of Parallelism
Specify configuration of threads

Three clauses of parallel region (parallel, kernels) for changing
distribution/configuration of group of threads
Presence of keyword: Distribute using this level
Optional size: Control size of parallel entity

 OpenACC: gang worker vector

#pragma acc parallel loop gang vector
Also: worker
Size: num_gangs(n), num_workers(n), vector_length(n)

Member of the Helmholtz Association 28 May 2019 Slide 79 118

Understanding Compiler Output II

110, Accelerator kernel generated
Generating Tesla code
110, Generating reduction(max:error)
111, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */
114, #pragma acc loop seq
114, Complex loop carried dependence of Anew-> prevents parallelization

Compiler reports configuration of parallel entities
Gangmapped to blockIdx.x
Vectormapped to threadIdx.x
Worker not used

Here: 128 threads per block; as many blocks as needed
128 seems to be default for Tesla/NVIDIA

Member of the Helmholtz Association 28 May 2019 Slide 80 118

More Parallelism
Unsequentialize inner loop

Add vector clause to inner loop
Study result with profiler

Task 6: More Parallelism

Change to Task6/ directory
Work on TODOs
Compile: make
Submit to the batch system: make run
Generate profile with make profile_tofile

? What’s your speed-up?

TASK 6

Member of the Helmholtz Association 28 May 2019 Slide 81 118

More Parallelism
Compiler Output

$ make
pgcc -DUSE_DOUBLE -Minfo=accel -fast -acc -ta=tesla:cc70 poisson2d.c poisson2d_reference.o
-o poisson2d

poisson2d.c:
main:

104, Generating create(Anew[:ny*nx])
Generating copyin(rhs[:ny*nx])
Generating copy(A[:ny*nx])

110, Accelerator kernel generated
Generating Tesla code
110, Generating reduction(max:error)
111, #pragma acc loop gang /* blockIdx.x */
114, #pragma acc loop vector(128) /* threadIdx.x */
...

Member of the Helmholtz Association 28 May 2019 Slide 82 118

Data Region
Run Result

$ make run
Jacobi relaxation calculation: max 500 iterations on 2048 x 2048 mesh
Calculate reference solution and time with serial CPU execution.

0, 0.249999
100, 0.249760
200, 0...

Calculate current execution.
0, 0.249999

100, 0.249760
200, 0...

2048x2048: Ref: 69.3831 s, This: 0.9627 s, speedup: 72.07

Actually slower!
Why?

Member of the Helmholtz Association 28 May 2019 Slide 83 118

Memory Coalescing
Memory in batch

Coalesced access good
Threads of warp (group of 32 contiguous threads) access adjacent words
Few transactions, high utilization

Uncoalesced access bad
Threads of warp access scattered words
Many transactions, low utilization

Best performance: threadIdx.x should access contiguously

0 1 … 31 0 1 … 31

Member of the Helmholtz Association 28 May 2019 Slide 84 118

Jacobi Access Pattern
A coalescion of data

Improve memory access pattern: Loop order in main loop
#pragma acc parallel loop reduction(max:error)
for (int ix = ix_start; ix < ix_end; ix++) {

#pragma acc loop vector
for (int iy = iy_start; iy < iy_end; iy++) {

Anew[iy*nx + ix] = -0.25 *
(rhs[iy*nx+ix] -↪→
(A[iy*nx+ix+1] + A[iy*nx+ix-1]

+ A[(iy-1)*nx+ix] + A[(iy+1)*nx+ix]));
//...

ix Outer run index; accesses
consecutive memory locations

iy Inner run index; accesses offset
memory locations

→ Change order to optimize pattern!

Member of the Helmholtz Association 28 May 2019 Slide 85 118

Jacobi Access Pattern
A coalescion of data

Improve memory access pattern: Loop order in main loop
#pragma acc parallel loop reduction(max:error)
for (int iy = iy_start; iy < iy_end; iy++) {

#pragma acc loop vector
for (int ix = ix_start; ix < ix_end; ix++) {

Anew[iy*nx + ix] = -0.25 *
(rhs[iy*nx+ix] -↪→
(A[iy*nx+ix+1] + A[iy*nx+ix-1]

+ A[(iy-1)*nx+ix] + A[(iy+1)*nx+ix]));
//...

ix Outer run index; accesses
consecutive memory locations

iy Inner run index; accesses offset
memory locations

→ Change order to optimize pattern!

Member of the Helmholtz Association 28 May 2019 Slide 85 118

Fixing Access Pattern
Loop change

Interchange loop order for Jacobi loops
Also: Compare to loop-fixed CPU reference version

Task 7: Loop Ordering

Change to Task7/ directory
Work on TODOs
Compile: make
Submit to the batch system: make run

? What’s your speed-up?

TASK 7

Member of the Helmholtz Association 28 May 2019 Slide 86 118

Fixing Access Pattern
Compiler output (unchanged)

$ make
pgcc -DUSE_DOUBLE -Minfo=accel -fast -acc -ta=tesla:cc70 poisson2d.c
poisson2d_reference.o -o poisson2d
poisson2d.c:
main:

104, Generating create(Anew[:ny*nx])
Generating copyin(rhs[:ny*nx])
Generating copy(A[:ny*nx])

110, Accelerator kernel generated
Generating Tesla code
110, Generating reduction(max:error)
111, #pragma acc loop gang /* blockIdx.x */
114, #pragma acc loop vector(128) /* threadIdx.x */
...

Member of the Helmholtz Association 28 May 2019 Slide 87 118

Fixing Access Pattern
Run Result

$ make run
Jacobi relaxation calculation: max 500 iterations on 2048 x 2048 mesh
Calculate reference solution and time with serial CPU execution.

0, 0.249999
100, 0.249760
200, 0...

Calculate current execution.
0, 0.249999

100, 0.249760
200, 0...

2048x2048: Ref: 72.1309 s, This: 0.2365 s, speedup: 304.95

Again with proper CPU
version!

Memory access pattern is al
so very important on CPU!

Member of the Helmholtz Association 28 May 2019 Slide 88 118

Fixing Access Pattern
Run Result II

$ make run
Jacobi relaxation calculation: max 500 iterations on 2048 x 2048 mesh
Calculate reference solution and time with serial CPU execution.

0, 0.249999
100, 0.249760
200, 0...

Calculate current execution.
0, 0.249999

100, 0.249760
200, 0...

2048x2048: Ref: 6.6684 s, This: 0.2361 s, speedup: 28.24

28× is great!

Member of the Helmholtz Association 28 May 2019 Slide 89 118

Page-Locked Memory
Pageability

Host memory allocated with malloc() is pageable
Memory pages of memory can bemoved by kernel, e.g. swapped to disk
Additional indirection

NVIDIA GPUs can allocate page-lockedmemory (pinnedmemory)
+ Faster (safety guards are skipped)
+ Interleaving of execution and copy (asynchronous)
+ Directly map into GPUmemory∗
− Scarce resource; OS performance could degrade

OpenACC: Very easy to use pinnedmemory
-ta=tesla:pinned

Member of the Helmholtz Association 28 May 2019 Slide 90 118

Page-Locked Memory
Loop change

Compare performance with and without pinnedmemory
Also test unified memory again

Task 7’: Pinned Memory

Like in Task 7, but change compilation to include pinned or managed
Submit to the batch system: make run

TASK 7’

Member of the Helmholtz Association 28 May 2019 Slide 91 118

Parallelization Workflow

Identify available parallelism

Parallelize loops with OpenACC

Optimize data locality

Optimize loop performance

Member of the Helmholtz Association 28 May 2019 Slide 92 118

Parallelization Workflow

Identify available parallelism

Parallelize loops with OpenACC

Optimize data locality

Optimize loop performance

Member of the Helmholtz Association 28 May 2019 Slide 92 118

Interoperability

Member of the Helmholtz Association 28 May 2019 Slide 93 118

Interoperability

OpenACC can operate together with
Applications
Libraries
CUDA

Both directions possible: Call OpenACC from others, call others from OpenACC

Member of the Helmholtz Association 28 May 2019 Slide 94 118

The Keyword
OpenACC’s Rosetta Stone

host_data use_device
Background

GPU and CPU are different devices, have different memory
→ Distinct address spaces

OpenACC hides handling of addresses from user
For every chunk of accelerated data, two addresses exist
One for CPU data, one for GPU data
OpenACC uses appropriate address in accelerated kernel

But: Automatic handling not working when out of OpenACC (OpenACCwill default to host
address)

→ host_data use_device uses the address of the GPU device data for scope

Member of the Helmholtz Association 28 May 2019 Slide 95 118

The host_data Construct
Example

Usage:
double* foo = new double[N]; // foo on Host
#pragma acc data copyin(foo[0:N]) // foo on Device
{
...
#pragma acc host_data use_device(foo)
some_lfunc(foo); // Device: OK!
...

}

Directive can be used for structured block as well

Member of the Helmholtz Association 28 May 2019 Slide 96 118

The Inverse: deviceptr
When CUDA is involved

For the inverse case:
Data has been copied by CUDA or a CUDA-using library
Pointer to data residing on devices is returned

→ Use this data in OpenACC context

deviceptr clause declares data to be on device
Usage:
float * n;
int n = 4223;
cudaMalloc((void**)&x,(size_t)n*sizeof(float));
// ...
#pragma acc kernels deviceptr(x)
for (int i = 0; i < n; i++) {

x[i] = i;
}

Member of the Helmholtz Association 28 May 2019 Slide 97 118

Interoperability
Tasks

Member of the Helmholtz Association 28 May 2019 Slide 98 118

cuBLAS

Task 1
Introduction to BLAS

Use case: Anything linear algebra
BLAS: Basic Linear Algebra Subprograms

Vector-vector, vector-matrix, matrix-matrix operations
Specification of routines
Examples: SAXPY, DGEMV, ZGEMM

→ http://www.netlib.org/blas/
cuBLAS: NVIDIA’s linear algebra routines with BLAS interface, readily accelerated
→ http://docs.nvidia.com/cuda/cublas/
Task 1: Use cuBLAS for vector addition, everything else with OpenACC

Member of the Helmholtz Association 28 May 2019 Slide 100 118

http://www.netlib.org/blas/
http://docs.nvidia.com/cuda/cublas/

Task 8-1
cuBLASOpenACC Interaction

cuBLAS routine used:
cublasDaxpy(cublasHandle_t handle, int n,

const double *alpha,
const double *x, int incx,
double *y, int incy)

handle capsules GPU auxiliary data, needs to be created and destroyed with
cublasCreate and cublasDestroy
x and y point to addresses on device!
cuBLAS library needs to be linked with -lcublas

Member of the Helmholtz Association 28 May 2019 Slide 101 118

Task 8-1
Vector Addition with cuBLAS

Use cuBLAS for vector addition

Task 8-1: OpenACC+cuBLAS

Change to Task8-1/ directory
Work on TODOs in vecAddRed.c

Use host_data use_device to provide correct pointer
Check cuBLAS documentation for details on cublasDaxpy()

Compile: make
Submit to the batch system: make run

TASK 8-1

Member of the Helmholtz Association 28 May 2019 Slide 102 118

http://docs.nvidia.com/cuda/cublas/#cublas-lt-t-gt-axpy

CUDA

Task 8-2
CUDA Need-to-Know

Use case:
Working on legacy code
Need the raw power (/flexibility) of CUDA

CUDA need-to-knows:
Thread→ Block→ Grid
Total number of threads should map to your problem; threads are alway given per block
A kernel is called from every thread on GPU device
Number of kernel threads: triple chevron syntax
kernel<<<nBlocks, nThreads>>>(arg1, arg2, ...)
Kernel: Function with __global__ prefix
Aware of its index by global variables, e.g. threadIdx.x

→ http://docs.nvidia.com/cuda/

Member of the Helmholtz Association 28 May 2019 Slide 104 118

http://docs.nvidia.com/cuda/

Task 8-2
Vector Addition with CUDA Kernel

CUDA kernel for vector addition, rest OpenACC
Marrying CUDA C and OpenACC:

All direct CUDA interaction wrapped in wrapper file cudaWrapper.cu, compiled with nvcc
to object file (-c)
vecAddRed.c calls external function from cudaWrapper.cu (extern)

Task 8-2: OpenACC+CUDA

Change to Task8-2/ directory
Work on TODOs in vecAddRed.c and cublasWrapper.cu

Use host_data use_device to provide correct pointer
Implement computation in kernel, implement call of kernel

Compile: make; Submit to the batch system: make run

TASK 8-2

Member of the Helmholtz Association 28 May 2019 Slide 105 118

Thrust

Thrust
Iterators! Iterators everywhere!

Thrust
CUDA = STL

C++
Template library
Based on iterators, but also works with plain C
Data-parallel primitives (scan(), sort(), reduce(), …); algorithms

→ http://thrust.github.io/
http://docs.nvidia.com/cuda/thrust/

Member of the Helmholtz Association 28 May 2019 Slide 107 118

http://thrust.github.io/
http://docs.nvidia.com/cuda/thrust/

Thrust
Code example

int a = 42;
int n = 10;
thrust::host_vector<float> x(n), y(n);
// fill x, y

thrust::device_vector d_x = x, d_y = y;

using namespace thrust::placeholders;
thrust::transform(d_x.begin(), d_x.end(), d_y.begin(), d_y.begin(), a * _1 + _2);

x = d_x;

Member of the Helmholtz Association 28 May 2019 Slide 108 118

Task 8-3
Vector Addition with Thrust

Use Thrust for reduction, everything else of vector addition with OpenACC

Task 8-3: OpenACC+Thrust

Change to Task8-3/ directory
Work on TODOs in vecAddRed.c and thrustWrapper.cu

Use host_data use_device to provide correct pointer
Implement call to thrust::reduce using c_ptr

Compile: make
Submit to the batch system: make run

8-3

Member of the Helmholtz Association 28 May 2019 Slide 109 118

cuFFT

Task 8-4
Stating the Problem

Wewant to solve the Poisson equation

ΔΦ(x, y) = −ρ(x, y)

with periodic boundary conditions in x and y
Needed, e.g., for finding electrostatic potential Φ for a given charge distribution ρ
Model problem

ρ(x, y) = cos(4πx) sin(2πy)
(x, y) ∈ [0, 1)2

Analytically known: Φ(x, y) = Φ0 cos(4πx) sin(2πy)
Let’s solve the Poisson equation with a Fourier Transform!

Member of the Helmholtz Association 28 May 2019 Slide 111 118

Task 8-4
Introduction to Fourier Transforms

Discrete Fourier Transform and Re-Transform:

f̂k =
N−1∑
j=0

fje−
2πik
N j ⇔ fj =

N−1∑
k=0

f̂ke
2πij
N k

Time for all f̂k: O(N2)

Fast Fourier Transform: Recursively splitting→O(N log(N))
Find derivatives in Fourier space:

fj′ =
N−1∑
k=0

ikf̂ke
2πij
N k

It’s just multiplying by ik!

Member of the Helmholtz Association 28 May 2019 Slide 112 118

Task 8-4
Plan for FFT Poisson Solution

Start with charge density ρ
1 Fourier-transform ρ

ρ̂← F (ρ)
2 Integrate ρ in Fourier space twice

φ̂← −ρ̂/
(
k2x + k2y

)
3 Inverse Fourier-transform φ̂

φ← F−1(φ̂)

cuFFT

OpenACC

cuFFT

Member of the Helmholtz Association 28 May 2019 Slide 113 118

Task 8-4
cuFFT

cuFFT: NVIDIA’s (Fast) Fourier Transform library
1D, 2D, 3D transforms; complex and real data types
Asynchronous execution
Modeled after FFTW library (API)
Part of CUDA Toolkit

→ https://developer.nvidia.com/cufft
cufftDoubleComplex *src, *tgt; // Device data!
cufftHandle plan;
// Setup 2d complex-complex trafo w/ dimensions (Nx, Ny)
cufftCreatePlan(plan, Nx, Ny, CUFFT_Z2Z);
cufftExecZ2Z(plan, src, tgt, CUFFT_FORWARD); // FFT
cufftExecZ2Z(plan, tgt, tgt, CUFFT_INVERSE); // iFFT
// Inplace trafo ^----^
cufftDestroy(plan); // Clean-up

Member of the Helmholtz Association 28 May 2019 Slide 114 118

https://developer.nvidia.com/cufft

Task 8-4
Synchronizing cuFFT

CUDA Streams enable interleaving of computational tasks
cuFFT uses streams for asynchronous execution
cuFFT runs in default CUDA stream;
OpenACC not→ trouble

⇒ Force cuFFT on OpenACC stream
#include <openacc.h>
// Obtain the OpenACC default stream id
cudaStream_t accStream = (cudaStream_t) acc_get_cuda_stream(acc_async_sync);
// Execute all cufft calls on this stream
cufftSetStream(accStream);

Member of the Helmholtz Association 28 May 2019 Slide 115 118

Task 8-4
OpenACC and cuFFT

Use case: Fourier transforms
Use cuFFT and OpenACC to solve Poisson’s Equation

Task 8-4: OpenACC+cuFFT

Change to Task8-4/ directory
Work on TODOs in poisson.c
solveRSpace Force cuFFT on correct stream; implement data handling with

host_data use_device
solveKSpace Implement data handling and parallelism
Compile: make
Submit to the batch system: make run

TASK 8-4

Member of the Helmholtz Association 28 May 2019 Slide 116 118

Conclusions

Member of the Helmholtz Association 28 May 2019 Slide 117 118

Conclusions

OpenACC directives and clauses
#pragma acc parallel loop copyin(A[0:N]) reduction(max:err) vector
Start easy, optimize from there
PGI / NVIDIA Visual Profiler help to find bottlenecks
OpenACC is interoperable to other GPU programmingmodels
Don’t forget the CPU version!

Thank you

for your att
ention!

a.herten@fz-juelich.de

Member of the Helmholtz Association 28 May 2019 Slide 118 118

mailto:a.herten@fz-juelich.de

Appendix
List of Tasks
Glossary
References

Member of the Helmholtz Association 28 May 2019 Slide 1 7

List of Tasks
Task 0⋆: Setup
Task 2: A First Parallel Loop
Task 3: More Parallel Loops
Task 4: Data Copies
Task 5: Data Region
Task 6: More Parallelism
Task 7: Loop Ordering
Task 7’: Pinned Memory
Task 8-1: OpenACC+cuBLAS
Task 8-2: OpenACC+CUDA
Task 8-3: OpenACC+Thrust
Task 8-4: OpenACC+cuFFT

Member of the Helmholtz Association 28 May 2019 Slide 2 7

Glossary I

API A programmatic interface to software by well-defined functions. Short for
application programming interface. 49

CUDA Computing platform for GPUs from NVIDIA. Provides, among others, CUDA
C/C++. 10, 17, 24, 49, 62, 63, 90, 108, 111, 117, 118, 119, 128, 129, 134, 136

GCC The GNU Compiler Collection, the collection of open source compilers, among
others for C and Fortran. 23, 26

NVIDIA US technology company creating GPUs. 19, 49, 61, 64, 69, 70, 71, 103, 114, 128,
132, 135, 136, 137

Member of the Helmholtz Association 28 May 2019 Slide 3 7

Glossary II

OpenACC Directive-based programming, primarily for many-core machines. 2, 17, 18, 19,
20, 21, 22, 24, 25, 26, 27, 28, 29, 32, 38, 39, 41, 43, 45, 49, 52, 55, 60, 64, 65, 72, 76,
79, 84, 85, 88, 90, 91, 103, 105, 106, 108, 109, 111, 114, 115, 116, 119, 123, 127,
129, 130, 132, 134

OpenCL The Open Computing Language. Framework for writing code for heterogeneous
architectures (CPU, GPU, DSP, FPGA). The alternative to CUDA. 17

OpenMP Directive-based programming, primarily for multi-threadedmachines. 2, 17, 20,
54

PAPI The Performance API, a C/C++ API for querying performance counters. 33
Pascal GPU architecture from NVIDIA (announced 2016). 62, 63

Member of the Helmholtz Association 28 May 2019 Slide 4 7

Glossary III

perf Part of the Linux kernel which facilitates access to performance counters; comes
with command line utilities. 33

PGI Compiler creators. Formerly The Portland Group, Inc.; since 2013 part of NVIDIA.
2, 23, 26, 33

Thrust A parallel algorithms library for (among others) GPUs. See
https://thrust.github.io/. 17, 120, 121, 122, 123, 134

CPU Central Processing Unit. 4, 5, 6, 7, 8, 9, 23, 49, 62, 63, 99, 101, 109, 132, 136

GPU Graphics Processing Unit. 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 17, 18, 23, 25, 45, 49, 61,
62, 63, 64, 69, 75, 77, 103, 109, 115, 118, 132, 135, 136, 137

Member of the Helmholtz Association 28 May 2019 Slide 5 7

https://thrust.github.io/

References I

[4] John L. Gustafson. “Reevaluating Amdahl’s Law”. In: Commun. ACM 31.5 (May 1988),
pp. 532–533. ISSN: 0001-0782. DOI: 10.1145/42411.42415. URL:
http://doi.acm.org/10.1145/42411.42415.

[6] Donald E. Knuth. “Structured Programming with Go to Statements”. In: ACM Comput.
Surv. 6.4 (Dec. 1974), pp. 261–301. ISSN: 0360-0300. DOI: 10.1145/356635.356640. URL:
http://doi.acm.org/10.1145/356635.356640 (page 33).

Member of the Helmholtz Association 28 May 2019 Slide 6 7

https://doi.org/10.1145/42411.42415
http://doi.acm.org/10.1145/42411.42415
https://doi.org/10.1145/356635.356640
http://doi.acm.org/10.1145/356635.356640

References: Images, Graphics

[1] SpaceX. SpaceX Launch. Freely available at Unsplash. URL:
https://unsplash.com/photos/uj3hvdfQujI.

[2] Mark Lee. Picture: kawasaki ninja. URL:
https://www.flickr.com/photos/pochacco20/39030210/. License: Creative
Commons BY-ND 2.0 (page 4).

[3] Bob Adams. Picture: Hylton Ross Mercedes Benz Irizar coach. URL:
https://www.flickr.com/photos/satransport/13197324714/. License:
Creative Commons BY-SA 2.0 (page 4).

[5] Setyo Ari Wibowo. Ask. URL: https://thenounproject.com/term/ask/1221810.

Member of the Helmholtz Association 28 May 2019 Slide 7 7

https://unsplash.com/photos/uj3hvdfQujI
https://www.flickr.com/photos/pochacco20/39030210/
https://creativecommons.org/licenses/by-nd/2.0/
https://www.flickr.com/photos/satransport/13197324714/
https://creativecommons.org/licenses/by-sa/2.0/
https://thenounproject.com/term/ask/1221810

	Outline
	The GPU Platform
	Introduction
	Threading Model
	App Showcase
	Parallel Models

	OpenACC
	History
	openmp
	Modus Operandi
	*openacc's Models

	*openacc by Example
	*openacc Workflow
	Identify Parallelism
	Parallelize Loops
	Data Transfers
	Optimize Data Locality
	Optimize Loop Performance

	Interoperability
	The Keyword
	Tasks

	Conclusions
	Appendix
	Appendix
	List of Tasks
	Glossary

	Glossary
	Acronyms
	References

	References
	References

