000868201 001__ 868201
000868201 005__ 20240709074453.0
000868201 0247_ $$2doi$$a10.1029/2019JD031329
000868201 0247_ $$2Handle$$a2128/24686
000868201 0247_ $$2altmetric$$aaltmetric:76902603
000868201 0247_ $$2WOS$$aWOS:000505626200063
000868201 037__ $$aFZJ-2019-06773
000868201 082__ $$a550
000868201 1001_ $$0P:(DE-HGF)0$$aSwenson, G. R.$$b0$$eCorresponding author
000868201 245__ $$aDetermination of Global mean Eddy Diffusive Transport in the Mesosphere and Lower Thermosphere From Atomix Oxygen and Carbon Dioxide Climatologies
000868201 260__ $$aHoboken, NJ$$bWiley$$c2019
000868201 3367_ $$2DRIVER$$aarticle
000868201 3367_ $$2DataCite$$aOutput Types/Journal article
000868201 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1587382937_5745
000868201 3367_ $$2BibTeX$$aARTICLE
000868201 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000868201 3367_ $$00$$2EndNote$$aJournal Article
000868201 520__ $$aQuantifying the eddy diffusion coefficient profile in the mesosphere and lower thermosphere (MLT) is critical to the constituent density distributions in the upper mesosphere and thermosphere. Previous work by Swenson et al. (2018, https://doi.org/10.1016/j.jastp.2018.05.014) estimated the global mean eddy diffusion (kzz) values in the upper mesosphere using atomic oxygen (O), derived from Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) hydroxyl (OH). In this study, vertical eddy diffusive transport velocities of O were determined from continuity of mass in the mesopause region (80–97 km), primarily via the HOx chemistry. Global average constituent climatology from previously deduced SABER ozone (O3) and atomic hydrogen (H) was applied. Furthermore, we extended the global mean eddy transport velocities to new heights (105 km) in the MLT using the newly available global mean Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) data. The combined method of determining O3 loss and O density climatology from SCIAMACHY, as well as an improved global mean background atmosphere from SABER, provides new information for eddy diffusion determination in the MLT. Three prominent results to emerge from this study include (i) global mean kzz profiles between 80 and 105 km derived from MLT constituent climatologies, SABER, and SCIAMACHY global mean O density profiles averaged for approximately one solar cycle, (ii) determination of O eddy diffusion velocities in the MLT consistent between two satellite measurements and the thermosphere‐ionosphere‐mesosphere‐electrodynamics general circulation model, and (iii) resolution of historically large differences between deduced kzz determined from O versus CO2 by analysis of SABER and SCIAMACHY measurements.
000868201 536__ $$0G:(DE-HGF)POF3-244$$a244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)$$cPOF3-244$$fPOF III$$x0
000868201 7001_ $$0P:(DE-HGF)0$$aSalinas, C. C. J. J. H.$$b1
000868201 7001_ $$0P:(DE-HGF)0$$aVargas, F.$$b2
000868201 7001_ $$0P:(DE-Juel1)156366$$aZhu, Yajun$$b3$$ufzj
000868201 7001_ $$0P:(DE-Juel1)129128$$aKaufmann, Martin$$b4$$ufzj
000868201 7001_ $$0P:(DE-HGF)0$$aJones Jr, M.$$b5
000868201 7001_ $$0P:(DE-HGF)0$$aDrob, D. P.$$b6
000868201 7001_ $$0P:(DE-HGF)0$$aYue, J.$$b7
000868201 7001_ $$0P:(DE-HGF)0$$aYee, J. H.$$b8
000868201 773__ $$0PERI:(DE-600)2016800-7$$a10.1029/2019JD031329$$n23$$p13519-13533$$tJournal of geophysical research / D$$v124$$x0148-0227$$y2019
000868201 8564_ $$uhttps://juser.fz-juelich.de/record/868201/files/2019JD031329.pdf$$yPublished on 2019-10-31. Available in OpenAccess from 2020-04-30.
000868201 8564_ $$uhttps://juser.fz-juelich.de/record/868201/files/2019JD031329.pdf?subformat=pdfa$$xpdfa$$yPublished on 2019-10-31. Available in OpenAccess from 2020-04-30.
000868201 909CO $$ooai:juser.fz-juelich.de:868201$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000868201 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156366$$aForschungszentrum Jülich$$b3$$kFZJ
000868201 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129128$$aForschungszentrum Jülich$$b4$$kFZJ
000868201 9131_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0
000868201 9141_ $$y2020
000868201 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000868201 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000868201 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ GEOPHYS RES-ATMOS : 2017
000868201 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000868201 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000868201 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000868201 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000868201 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000868201 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000868201 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000868201 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000868201 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000868201 9801_ $$aFullTexts
000868201 980__ $$ajournal
000868201 980__ $$aVDB
000868201 980__ $$aUNRESTRICTED
000868201 980__ $$aI:(DE-Juel1)IEK-7-20101013
000868201 981__ $$aI:(DE-Juel1)ICE-4-20101013