Hauptseite > Publikationsdatenbank > Determination of Global mean Eddy Diffusive Transport in the Mesosphere and Lower Thermosphere From Atomix Oxygen and Carbon Dioxide Climatologies > print |
001 | 868201 | ||
005 | 20240709074453.0 | ||
024 | 7 | _ | |a 10.1029/2019JD031329 |2 doi |
024 | 7 | _ | |a 2128/24686 |2 Handle |
024 | 7 | _ | |a altmetric:76902603 |2 altmetric |
024 | 7 | _ | |a WOS:000505626200063 |2 WOS |
037 | _ | _ | |a FZJ-2019-06773 |
082 | _ | _ | |a 550 |
100 | 1 | _ | |a Swenson, G. R. |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
245 | _ | _ | |a Determination of Global mean Eddy Diffusive Transport in the Mesosphere and Lower Thermosphere From Atomix Oxygen and Carbon Dioxide Climatologies |
260 | _ | _ | |a Hoboken, NJ |c 2019 |b Wiley |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1587382937_5745 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Quantifying the eddy diffusion coefficient profile in the mesosphere and lower thermosphere (MLT) is critical to the constituent density distributions in the upper mesosphere and thermosphere. Previous work by Swenson et al. (2018, https://doi.org/10.1016/j.jastp.2018.05.014) estimated the global mean eddy diffusion (kzz) values in the upper mesosphere using atomic oxygen (O), derived from Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) hydroxyl (OH). In this study, vertical eddy diffusive transport velocities of O were determined from continuity of mass in the mesopause region (80–97 km), primarily via the HOx chemistry. Global average constituent climatology from previously deduced SABER ozone (O3) and atomic hydrogen (H) was applied. Furthermore, we extended the global mean eddy transport velocities to new heights (105 km) in the MLT using the newly available global mean Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) data. The combined method of determining O3 loss and O density climatology from SCIAMACHY, as well as an improved global mean background atmosphere from SABER, provides new information for eddy diffusion determination in the MLT. Three prominent results to emerge from this study include (i) global mean kzz profiles between 80 and 105 km derived from MLT constituent climatologies, SABER, and SCIAMACHY global mean O density profiles averaged for approximately one solar cycle, (ii) determination of O eddy diffusion velocities in the MLT consistent between two satellite measurements and the thermosphere‐ionosphere‐mesosphere‐electrodynamics general circulation model, and (iii) resolution of historically large differences between deduced kzz determined from O versus CO2 by analysis of SABER and SCIAMACHY measurements. |
536 | _ | _ | |a 244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244) |0 G:(DE-HGF)POF3-244 |c POF3-244 |f POF III |x 0 |
700 | 1 | _ | |a Salinas, C. C. J. J. H. |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Vargas, F. |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Zhu, Yajun |0 P:(DE-Juel1)156366 |b 3 |u fzj |
700 | 1 | _ | |a Kaufmann, Martin |0 P:(DE-Juel1)129128 |b 4 |u fzj |
700 | 1 | _ | |a Jones Jr, M. |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Drob, D. P. |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Yue, J. |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Yee, J. H. |0 P:(DE-HGF)0 |b 8 |
773 | _ | _ | |a 10.1029/2019JD031329 |0 PERI:(DE-600)2016800-7 |n 23 |p 13519-13533 |t Journal of geophysical research / D |v 124 |y 2019 |x 0148-0227 |
856 | 4 | _ | |y Published on 2019-10-31. Available in OpenAccess from 2020-04-30. |u https://juser.fz-juelich.de/record/868201/files/2019JD031329.pdf |
856 | 4 | _ | |y Published on 2019-10-31. Available in OpenAccess from 2020-04-30. |x pdfa |u https://juser.fz-juelich.de/record/868201/files/2019JD031329.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:868201 |p openaire |p open_access |p driver |p VDB:Earth_Environment |p VDB |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)156366 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)129128 |
913 | 1 | _ | |a DE-HGF |l Atmosphäre und Klima |1 G:(DE-HGF)POF3-240 |0 G:(DE-HGF)POF3-244 |2 G:(DE-HGF)POF3-200 |v Composition and dynamics of the upper troposphere and middle atmosphere |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Erde und Umwelt |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J GEOPHYS RES-ATMOS : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-7-20101013 |k IEK-7 |l Stratosphäre |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-7-20101013 |
981 | _ | _ | |a I:(DE-Juel1)ICE-4-20101013 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|