
GPU: PLATFORM AND PROGRAMMING
GEORGIAN-GERMAN SCIENCE BRIDGE QUALISTARTUP
12 September 2019 Andreas Herten Forschungszentrum Jülich Handout Version

Member of the Helmholtz Association

About, Outline

Jülich Supercomputing Centre

Operation of supercomputers
Application support
Research
Me: All things GPU

 Slides: http://bit.ly/ggsb-gpu

Topics
Motivation
Platform

Hardware
Features
High Throughput
Summary
Vendor Comparison

Programming GPUs
Libraries
About GPU Programming
Directives
Languages
Abstraction Libraries/DSL
Tools

Member of the Helmholtz Association 12 September 2019 Slide 1 64

http://bit.ly/ggsb-gpu

Status Quo
A short but parallel story

1999 Graphics computation pipeline implemented in dedicated graphics hardware
Computations using OpenGL graphics library [2]
»GPU« coined by NVIDIA [3]

2001 NVIDIA GeForce 3 with programmable shaders (instead of fixed pipeline) and
floating-point support; 2003: DirectX 9 at ATI

2007 CUDA
2009 OpenCL
2019 Top 500: 25%with NVIDIA GPUs (#1, #2) [4], Green 500: 8 of top 10 with GPUs [5]
2021 Aurora: First (?) US exascale supercomputer based on Intel GPUs

Frontier: First (?) USmore-than-exascale supercomputer based on AMD GPUs

Status Quo
A short but parallel story

10
2

10
3

10
4

 2008 2010 2012 2014 2016 2018

HD 3
870

HD 4
870

HD 5
870

HD 6
970

HD 6
970

HD 7
970 G

Hz
Ed.

HD 8
970

Fire
Pro

 W
9100

Fire
Pro

 S
9150

M
I2

5

MI60

X5482

X5492

W
5590

X5680

X5690

E5-2
690 E5-2

697 v
2

E5-2
699 v

3

E5-2
699 v

3

E5-2
699 v

4

Pla
tin

um
 8

180 Pla
tin

um
 9

282

Tesla
 C

1060

Tesla
 C

1060 Tesla
 C

2050 Tesla
 M

2090

Tesla
 K

20

Tesla
 K

20X

Tesla
 K

40

Tesla
 K

40

Tesla
 P

100

Tesla
 V

100

Xeon Phi 7120 (KNC)

X
eo

n
P
hi

 7
29

0
(K

N
L)

G
F

L
O

P
/s

e
c

End of Year

Theoretical Peak Performance, Double Precision

INTEL Xeon CPUs

NVIDIA Tesla GPUs

AMD Radeon GPUs

INTEL Xeon Phis

Gr
ap

hi
c:
Ru

pp
[6
]

Status Quo
Peak performance double precision

10
1

10
2

10
3

 2008 2010 2012 2014 2016 2018

HD 3870

HD 4870
HD 5870

HD 6970

HD 6970
HD 7970 G

Hz Ed.

HD 8970
Fire

Pro W
9100

Fire
Pro S9150

MI25

MI60

X5482
X5492

W5590

X5680
X5690

E5-2690
E5-2697 v2

E5-2699 v3

E5-2699 v3

E5-2699 v4

Platin
um 8180

Platin
um 9282

Tesla C
1060

Tesla C
1060 Tesla C

2050
Tesla M

2090

Tesla K20 Tesla K20X

Tesla K40

Tesla P100

Tesla V100

Xeon Phi 7120 (KNC)

X
eo

n
P
hi

 7
29

0
(K

N
L)

G
B

/s
e
c

End of Year

Theoretical Peak Memory Bandwidth Comparison

INTEL Xeon CPUs

NVIDIA Tesla GPUs

AMD Radeon GPUs

INTEL Xeon Phis

Gr
ap

hi
c:
Ru

pp
[6
]

Status Quo
Peakmemory bandwidth

JURECA – Jülich’s Multi-Purpose Supercomputer
1872 nodes with Intel Xeon E5 CPUs (2× 12 cores)
75 nodes with 2 NVIDIA Tesla K80 cards (look like 4 GPUs)
JURECA Booster: 1640 nodes with Intel Xeon Phi Knights Landing
1.8 (CPU) + 0.44 (GPU) + 5 (KNL) PFLOP/s peak performance
Mellanox EDR InfiniBand

JUWELS – Jülich’s New Scalable System
2500 nodes with Intel Xeon CPUs (2× 24 cores)
48 nodes with 4 NVIDIA Tesla V100 cards
10.4 (CPU) + 1.6 (GPU) PFLOP/s peak performance

Next:
Booster!

Platform

CPU vs. GPU
Amatter of specialties

Transporting one

Gr
ap

hi
cs
:L
ee

[7
]a

nd
Sh

ea
rin

gs
H
ol
id
ay
s[
8]

Transporting many

Member of the Helmholtz Association 12 September 2019 Slide 6 64

CPU vs. GPU
Chip

ALUALU

ALU ALU
Control

Cache

DRAM DRAM

Member of the Helmholtz Association 12 September 2019 Slide 6 64

GPU Architecture
Overview

Aim: Hide Latency
Everything else follows

SIMT

Asynchronicity

Memory

→ High Throughput

Member of the Helmholtz Association 12 September 2019 Slide 7 64

GPU Architecture
Overview

Aim: Hide Latency
Everything else follows

SIMT

Asynchronicity

Memory

→ High Throughput

Member of the Helmholtz Association 12 September 2019 Slide 7 64

Memory
GPUmemory ain’t no CPUmemory

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host

Device

PCIe 3
<16GB/s

GPU: accelerator / extension card
→ Separate device from CPU

Separate memory, but UVA
Memory transfers need special consideration!
Do as little as possible!
Formerly: Explicitly copy data to/from GPU
Now: Done automatically (performance…?)

P100
16GB RAM, 720 GB/s

V100
32GB RAM, 900 GB/s

Unified Virtual Addressing

Member of the Helmholtz Association 12 September 2019 Slide 8 64

Memory
GPUmemory ain’t no CPUmemory

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host

Device

HBM2
<900GB/s

NVLink
≈80GB/s

GPU: accelerator / extension card
→ Separate device from CPU

Separate memory, but UVA and UM
Memory transfers need special consideration!
Do as little as possible!
Formerly: Explicitly copy data to/from GPU
Now: Done automatically (performance…?)

P100
16GB RAM, 720 GB/s

V100
32GB RAM, 900 GB/s

Unified Memory

Member of the Helmholtz Association 12 September 2019 Slide 8 64

Processing Flow
CPU→ GPU→ CPU

CPU

CPUMemory

Scheduler

. . .

Interconnect

L2

DRAM

1 Transfer data from CPU memory to GPU memory, transfer
program

2 Load GPU program, execute on SMs, get (cached) data from
memory; write back

3 Transfer results back to host memory

Member of the Helmholtz Association 12 September 2019 Slide 9 64

Processing Flow
CPU→ GPU→ CPU

CPU

CPUMemory

Scheduler

. . .

Interconnect

L2

DRAM

1 Transfer data from CPU memory to GPU memory, transfer
program

2 Load GPU program, execute on SMs, get (cached) data from
memory; write back

3 Transfer results back to host memory

Member of the Helmholtz Association 12 September 2019 Slide 9 64

Processing Flow
CPU→ GPU→ CPU

CPU

CPUMemory

Scheduler

. . .

Interconnect

L2

DRAM

1 Transfer data from CPU memory to GPU memory, transfer
program

2 Load GPU program, execute on SMs, get (cached) data from
memory; write back

3 Transfer results back to host memory

Member of the Helmholtz Association 12 September 2019 Slide 9 64

GPU Architecture
Overview

Aim: Hide Latency
Everything else follows

SIMT

Asynchronicity

Memory

→ High Throughput

Member of the Helmholtz Association 12 September 2019 Slide 10 64

Async
Following different streams

Problem: Memory transfer is comparably slow
Solution: Do something else in meantime (computation)!

→ Overlap tasks

Copy and compute engines run separately (streams)
Copy Compute Copy Compute

Copy Compute Copy Compute

GPU needs to be fed: Schedule many computations
CPU can do other work while GPU computes; synchronization
Also: Fast switching of contexts to keep GPU busy (KGB)

Member of the Helmholtz Association 12 September 2019 Slide 11 64

GPU Architecture
Overview

Aim: Hide Latency
Everything else follows

SIMT

Asynchronicity

Memory

→ High Throughput

Member of the Helmholtz Association 12 September 2019 Slide 12 64

SIMT
Of threads and warps

CPU:
Single Instruction, Multiple Data (SIMD)
Simultaneous Multithreading (SMT)

GPU: Single Instruction, Multiple Threads (SIMT)
CPU core≊ GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)→ hide latency
Branching if

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Core Core

Core Core

Thread

Thread

SMT

SIMT

Member of the Helmholtz Association 12 September 2019 Slide 13 64

SIMT
Of threads and warps

CPU:
Single Instruction, Multiple Data (SIMD)
Simultaneous Multithreading (SMT)

GPU: Single Instruction, Multiple Threads (SIMT)
CPU core≊ GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)→ hide latency
Branching if

Tesla V100

Gr
ap

hi
cs
:N

vi
di
a
Co

rp
or
at
io
n
[9
]

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Core Core

Core Core

Thread

Thread

SMT

SIMT

Member of the Helmholtz Association 12 September 2019 Slide 13 64

SIMT
Of threads and warps

CPU:
Single Instruction, Multiple Data (SIMD)
Simultaneous Multithreading (SMT)

GPU: Single Instruction, Multiple Threads (SIMT)
CPU core≊ GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)→ hide latency
Branching if

Tesla V100

Multiprocessor

Te
ns
or
Co

re

Gr
ap

hi
cs
:N

vi
di
a
Co

rp
or
at
io
n
[9
]

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Core Core

Core Core

Thread

Thread

SMT

SIMT

Member of the Helmholtz Association 12 September 2019 Slide 13 64

New: Tensor Cores
New in Volta

8 Tensor Cores per Streaming Multiprocessor (SM) (640 total for V100)
Performance: 125 TFLOP/s (half precision)
Calculate A× B+ C = D (4× 4 matrices; A, B: half precision)

→ 64 floating-point FMA operations per clock (mixed precision)

× + =

FP16 FP32 FP16 FP32 FP16
FP32 FP32 FP16

FP32

Member of the Helmholtz Association 12 September 2019 Slide 14 64

GPU Architecture
Overview

Aim: Hide Latency
Everything else follows

SIMT

Asynchronicity

Memory

→ High Throughput

Member of the Helmholtz Association 12 September 2019 Slide 15 64

GPU Architecture
Overview

Aim: Hide Latency
Everything else follows

SIMT

Asynchronicity

Memory

→ High Throughput

Member of the Helmholtz Association 12 September 2019 Slide 15 64

GPU Architecture
Overview

Aim: Hide Latency
Everything else follows

SIMT

Asynchronicity

Memory

→ High Throughput

Member of the Helmholtz Association 12 September 2019 Slide 15 64

GPU Architecture
Overview

Aim: Hide Latency
Everything else follows

SIMT

Asynchronicity

Memory

→ High Throughput

Member of the Helmholtz Association 12 September 2019 Slide 15 64

GPU Architecture
Overview

Aim: Hide Latency
Everything else follows

SIMT

Asynchronicity

Memory

→ High Throughput

Member of the Helmholtz Association 12 September 2019 Slide 15 64

Low Latency vs. High Throughput
Maybe GPU’s ultimate feature

CPU Minimizes latency within each thread
GPU Hides latency with computations from other thread warps

CPU Core: Low Latency
T1 T2 T3 T4

GPU Streaming Multiprocessor: High Throughput
W1

W2

W3

W4 Waiting
Ready
Context Switch
Processing
Thread/Warp

Member of the Helmholtz Association 12 September 2019 Slide 16 64

CPU vs. GPU
Let’s summarize this!

Optimized for low latency
+ Large main memory
+ Fast clock rate
+ Large caches
+ Branch prediction
+ Powerful ALU
− Relatively lowmemory bandwidth
− Cachemisses costly
− Low performance per watt

Optimized for high throughput
+ High bandwidth main memory
+ Latency tolerant (parallelism)
+ More compute resources
+ High performance per watt
− Limited memory capacity
− Low per-thread performance
− Extension card

Member of the Helmholtz Association 12 September 2019 Slide 17 64

GPU Device Comparison
Feature NVIDIA  AMD 

HPC-grade
Name Tesla V100 (Volta)  Radeon Instinct MI60 (Vega) 

Performance / TFLOP/s 14.8FP32, 7.5FP64 14.7FP32, 7.4FP64
Memory Capacity / GB 32 32

Memory Bandwidth / TB/s 0.9 1
Workstation-grade

Name Quadro GV100 (Volta)  Radeon Pro Vega II (Vega) 

Performance 14.8FP32, 7.4FP64 14.2FP32, 0.9FP64
Memory Capacity 32 32
Memory Bandwidth 0.9 1

Consumer-grade
Name GeForce RTX 2080 Super (Turing) Radeon RX 5700 XT (Navi)

Performance 11FP32, 0.3FP64 10FP32, ?
Memory Capacity 8 8
Memory Bandwidth 0.5 0.4

https://en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units
https://en.wikipedia.org/wiki/List_of_AMD_graphics_processing_units
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://www.amd.com/system/files/documents/radeon-instinct-mi60-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/documents/quadro-volta-gv100-us-nv-623049-r10-hr.pdf
https://www.amd.com/en/graphics/workstations-radeon-pro-vega-ii

Programming GPUs

Preface: CPU
A simple CPU program as reference!

SAXPY: y⃗ = a⃗x+ y⃗, with single precision
Part of LAPACK BLAS Level 1
void saxpy(int n, float a, float * x, float * y) {

for (int i = 0; i < n; i++)
y[i] = a * x[i] + y[i];

}

int a = 42;
int n = 10;
float x[n], y[n];
// fill x, y

saxpy(n, a, x, y);

Member of the Helmholtz Association 12 September 2019 Slide 20 64

http://www.netlib.org/lapack/

Libraries
Programming GPUs is easy: Just don’t!

Use applications & libraries

W
iz
ar
d:

Br
ea
ze
ll
[1
0]

cuBLAS rocBLAS

cuSPARSE
rocSPARSE

cuDNN rocDNN

cuFFT rocFFT

cuRAND rocRAND
CUDA Math

th ano

Member of the Helmholtz Association 12 September 2019 Slide 21 64

Libraries
Programming GPUs is easy: Just don’t!

Use applications & libraries

W
iz
ar
d:

Br
ea
ze
ll
[1
0]

cuBLAS rocBLAS

cuSPARSE
rocSPARSE

cuDNN rocDNN

cuFFT rocFFT

cuRAND rocRAND
CUDA Math

th ano

Member of the Helmholtz Association 12 September 2019 Slide 21 64

BLAS on GPU
Parallel algebra

cuBLAS
GPU-parallel BLAS (all 152 routines) by NVIDIA
Single, double, complex data types
Constant competition with Intel’s MKL
Multi-GPU support

→ https://developer.nvidia.com/cublas
http://docs.nvidia.com/cuda/cublas

rocBLAS
AMD BLAS implementation

→ https://github.com/ROCmSoftwarePlatform/rocBLAS
https://rocblas.readthedocs.io/en/latest/

Member of the Helmholtz Association 12 September 2019 Slide 22 64

https://developer.nvidia.com/cublas
http://docs.nvidia.com/cuda/cublas
https://github.com/ROCmSoftwarePlatform/rocBLAS
https://rocblas.readthedocs.io/en/latest/

cuBLAS
Code example

int a = 42; int n = 10;
float x[n], y[n];
// fill x, y

cublasHandle_t handle;
cublasCreate(&handle);

float * d_x, * d_y;
cudaMallocManaged(&d_x, n * sizeof(x[0]);
cudaMallocManaged(&d_y, n * sizeof(y[0]);
cublasSetVector(n, sizeof(x[0]), x, 1, d_x, 1);
cublasSetVector(n, sizeof(y[0]), y, 1, d_y, 1);

cublasSaxpy(n, a, d_x, 1, d_y, 1);

cublasGetVector(n, sizeof(y[0]), d_y, 1, y, 1);

cudaFree(d_x); cudaFree(d_y);
cublasDestroy(handle);

Member of the Helmholtz Association 12 September 2019 Slide 23 64

cuBLAS
Code example

int a = 42; int n = 10;
float x[n], y[n];
// fill x, y

cublasHandle_t handle;
cublasCreate(&handle);

float * d_x, * d_y;
cudaMallocManaged(&d_x, n * sizeof(x[0]);
cudaMallocManaged(&d_y, n * sizeof(y[0]);
cublasSetVector(n, sizeof(x[0]), x, 1, d_x, 1);
cublasSetVector(n, sizeof(y[0]), y, 1, d_y, 1);

cublasSaxpy(n, a, d_x, 1, d_y, 1);

cublasGetVector(n, sizeof(y[0]), d_y, 1, y, 1);

cudaFree(d_x); cudaFree(d_y);
cublasDestroy(handle);

Initialize

Allocate GPUmemory

Copy data to GPU

Call BLAS routine

Copy result to host

Finalize

Member of the Helmholtz Association 12 September 2019 Slide 23 64

Libraries
Programming GPUs is easy: Just don’t!

Use applications & libraries

W
iz
ar
d:

Br
ea
ze
ll
[1
0]

cuBLAS rocBLAS

cuSPARSE
rocSPARSE

cuDNN rocDNN

cuFFT rocFFT

cuRAND rocRAND
CUDA Math

th ano

Member of the Helmholtz Association 12 September 2019 Slide 24 64

Thrust
Iterators! Iterators everywhere!

Thrust
CUDA = STL

C++
Template library
Based on iterators
Data-parallel primitives (scan(), sort(), reduce(), …)
Fully compatible with plain CUDA C (comes with CUDA Toolkit)
Great with [](){} lambdas!

→ http://thrust.github.io/
http://docs.nvidia.com/cuda/thrust/

AMD backend available: https://github.com/ROCmSoftwarePlatform/Thrust

Member of the Helmholtz Association 12 September 2019 Slide 25 64

http://thrust.github.io/
http://docs.nvidia.com/cuda/thrust/
https://github.com/ROCmSoftwarePlatform/Thrust

Thrust
Code example

int a = 42;
int n = 10;
thrust::host_vector<float> x(n), y(n);
// fill x, y

thrust::device_vector d_x = x, d_y = y;

using namespace thrust::placeholders;
thrust::transform(d_x.begin(), d_x.end(), d_y.begin(), d_y.begin(), a * _1 + _2);

x = d_x;

Member of the Helmholtz Association 12 September 2019 Slide 26 64

Thrust
Code example with lambdas

#include <thrust/for_each.h>
#include <thrust/execution_policy.h>
constexpr int gGpuThreshold = 10000;
void saxpy(float *x, float *y, float a, int N) {

auto r = thrust::counting_iterator<int>(0);

auto lambda = [=] __host__ __device__ (int i) {
y[i] = a * x[i] + y[i];};

if(N > gGpuThreshold)
thrust::for_each(thrust::device, r, r+N, lambda);

else
thrust::for_each(thrust::host, r, r+N, lambda);}

So
ur
ce

Member of the Helmholtz Association 12 September 2019 Slide 27 64

https://devblogs.nvidia.com/parallelforall/new-compiler-features-cuda-8/

Programming GPUs
About GPU Programming

! Parallelism

Libraries are not enough?

You think you want to write your own GPU code?

Member of the Helmholtz Association 12 September 2019 Slide 29 64

Primer on Parallel Scaling
Amdahl’s Law

Possible maximum speedup for
N parallel processors
Total Time t = tserial + tparallel
N Processors t(N) = ts + tp/N

Speedup s(N) = t/t(N) = ts+tp
ts+tp/N

1 2 4 8 16 32 64 128 256 512 1024 2048 4096
Number of Processors

0

20

40

60

80

100

Sp
ee

du
p

Parallel Portion: 50%
Parallel Portion: 75%
Parallel Portion: 90%
Parallel Portion: 95%
Parallel Portion: 99%

Member of the Helmholtz Association 12 September 2019 Slide 30 64

! Parallelism

Parallel programming is not easy!

Things to consider:
Is my application computationally intensive enough?
What are the levels of parallelism?
Howmuch data needs to be transferred?
Is the gainworth the pain?

Member of the Helmholtz Association 12 September 2019 Slide 31 64

Possibilities

Different levels of closeness to GPUwhen GPU-programming, which can ease the pain…
OpenACC, OpenMP
Thrust, Kokkos, SYCL
PyCUDA, Cupy, Numba

Other alternatives (for completeness)
CUDA Fortran
HIP

OpenCL

Member of the Helmholtz Association 12 September 2019 Slide 32 64

Programming GPUs
Directives

GPU Programming with Directives
Keepin’ you portable

Annotate usual source code by directives
#pragma acc loop
for (int i = 0; i < 1; i+*) {};

Also: Generalized API functions
acc_copy();

Compiler interprets directives, creates according instructions

Pro
Portability

Other compiler? No problem! To it, it’s a
serial program
Different target architectures from same
code

Easy to program

Con
Compilers support limited
Raw power hidden
Somewhat harder to debug

Member of the Helmholtz Association 12 September 2019 Slide 34 64

GPU Programming with Directives
The power of… two.

OpenMP Standard for multithread programming on CPU, GPU since 4.0, better since 4.5
#pragma omp target map(tofrom:y), map(to:x)
#pragma omp teams num_teams(10) num_threads(10)
#pragma omp distribute
for () {

#pragma omp parallel for
for () {
// …
}

}

OpenACC Similar to OpenMP, but more specifically for GPUs

Member of the Helmholtz Association 12 September 2019 Slide 35 64

OpenACC
Code example

void saxpy_acc(int n, float a, float * x, float * y) {
#pragma acc kernels
for (int i = 0; i < n; i++)
y[i] = a * x[i] + y[i];

}

int a = 42;
int n = 10;
float x[n], y[n];
// fill x, y

saxpy_acc(n, a, x, y);

Member of the Helmholtz Association 12 September 2019 Slide 36 64

OpenACC
Code example

void saxpy_acc(int n, float a, float * x, float * y) {
#pragma acc kernels
for (int i = 0; i < n; i++)
y[i] = a * x[i] + y[i];

}

int a = 42;
int n = 10;
float x[n], y[n];
// fill x, y

saxpy_acc(n, a, x, y);

See JSC OpenACC course in Oc
tober!

Member of the Helmholtz Association 12 September 2019 Slide 36 64

http://www.fz-juelich.de/SharedDocs/Termine/IAS/JSC/EN/courses/2019/gpu-openacc-2019.html

Programming GPUs
Languages, finally

Programming GPU Directly
Finally…

OpenCL Open Computing Language by Khronos Group (Apple, IBM, NVIDIA, …) 2009
Platform: Programming language (OpenCL C/C++), API, and compiler
Targets CPUs, GPUs, FPGAs, and other many-core machines
Fully open source

CUDA NVIDIA’s GPU platform 2007
Platform: Drivers, programming language (CUDA C/C++), API, compiler, tools, …
Only NVIDIA GPUs
Compilation with nvcc (free, but not open)
clang has CUDA support, but CUDA needed for last step
Also: CUDA Fortran

HIP AMD’s new unified programmingmodel for AMD (via ROCm) and NVIDIA GPUs 2016+

Choose what flavor you like, what colleagues/collaboration is using
Hardest: Come up with parallelized algorithm

Member of the Helmholtz Association 12 September 2019 Slide 38 64

CUDA Threading Model
Warp the kernel, it’s a thread!

Methods to exploit parallelism:

Thread → Block

Block → Grid

Threads & blocks in 3D3D3D3D

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!

⇒ SAXPY!

Member of the Helmholtz Association 12 September 2019 Slide 39 64

CUDA SAXPY
With runtime-managed data transfers

__global__ void saxpy(int n, float a, float * x, float * y) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < n)
y[i] = a * x[i] + y[i];

}

int a = 42;
int n = 10;
float x[n], y[n];
// fill x, y
cudaMallocManaged(&x, n * sizeof(float));
cudaMallocManaged(&y, n * sizeof(float));

saxpy_cuda<<<2, 5>>>(n, a, x, y);

cudaDeviceSynchronize();

Specify kernel

ID variables

Guard against
too many threads

Allocate GPU-capable
memory

Call kernel
2 blocks, each 5 threads

Wait for
kernel to finish

Member of the Helmholtz Association 12 September 2019 Slide 40 64

Kernel Functions

Kernel: Parallel GPU function
Executed by each thread
In parallel
Called from host or device

All threads execute same code; but can take different paths in program flow (some
penalty)
Info about thread: local, global IDs
int currentThreadId = threadIdx.x;
float x = input[currentThreadId];
output[currentThreadId] = x*x;

Member of the Helmholtz Association 12 September 2019 Slide 41 64

Kernel Conversion
Recipe for C Function→ CUDA Kernel

Identify Loops Extract Index Extract Termination Condition Remove for Add global

Replace i by threadIdx.x … including block configuration
void scale(float scale, float * in, float * out, int N) {

for (int i = 0; i < N; i++)
out[i] = scale * in[i];

}

Member of the Helmholtz Association 12 September 2019 Slide 42 64

Kernel Conversion
Recipe for C Function→ CUDA Kernel

Identify Loops Extract Index Extract Termination Condition Remove for Add global

Replace i by threadIdx.x … including block configuration
void scale(float scale, float * in, float * out, int N) {

for (
int i = 0;
i < N;
i++

)
out[i] = scale * in[i];

}

Member of the Helmholtz Association 12 September 2019 Slide 42 64

Kernel Conversion
Recipe for C Function→ CUDA Kernel

Identify Loops Extract Index Extract Termination Condition Remove for Add global

Replace i by threadIdx.x … including block configuration
void scale(float scale, float * in, float * out, int N) {

int i = 0;
for (;

i < N;
i++

)
out[i] = scale * in[i];

}

Member of the Helmholtz Association 12 September 2019 Slide 42 64

Kernel Conversion
Recipe for C Function→ CUDA Kernel

Identify Loops Extract Index Extract Termination Condition Remove for Add global

Replace i by threadIdx.x … including block configuration
void scale(float scale, float * in, float * out, int N) {

int i = 0;
for (;

;
i++

)
if (i < N)

out[i] = scale * in[i];
}

Member of the Helmholtz Association 12 September 2019 Slide 42 64

Kernel Conversion
Recipe for C Function→ CUDA Kernel

Identify Loops Extract Index Extract Termination Condition Remove for Add global

Replace i by threadIdx.x … including block configuration
void scale(float scale, float * in, float * out, int N) {

int i = 0;

if (i < N)
out[i] = scale * in[i];

}

Member of the Helmholtz Association 12 September 2019 Slide 42 64

Kernel Conversion
Recipe for C Function→ CUDA Kernel

Identify Loops Extract Index Extract Termination Condition Remove for Add global

Replace i by threadIdx.x … including block configuration
__global__ void scale(float scale, float * in, float * out, int N) {

int i = 0;

if (i < N)
out[i] = scale * in[i];

}

Member of the Helmholtz Association 12 September 2019 Slide 42 64

Kernel Conversion
Recipe for C Function→ CUDA Kernel

Identify Loops Extract Index Extract Termination Condition Remove for Add global

Replace i by threadIdx.x … including block configuration
__global__ void scale(float scale, float * in, float * out, int N) {

int i = threadIdx.x;

if (i < N)
out[i] = scale * in[i];

}

Member of the Helmholtz Association 12 September 2019 Slide 42 64

Kernel Conversion
Recipe for C Function→ CUDA Kernel

Identify Loops Extract Index Extract Termination Condition Remove for Add global

Replace i by threadIdx.x … including block configuration
__global__ void scale(float scale, float * in, float * out, int N) {

int i = threadIdx.x + blockIdx.x * blockDim.x;

if (i < N)
out[i] = scale * in[i];

}

Member of the Helmholtz Association 12 September 2019 Slide 42 64

Kernel Conversion
Summary

C function with explicit loop
void scale(float scale, float * in, float * out, int N) {

for (int i = 0; i < N; i++)
out[i] = scale * in[i];

}
CUDA kernel with implicit loop
__global__ void scale(float scale, float * in, float * out, int N) {

int i = threadIdx.x + blockIdx.x * blockDim.x;
if (i < N)

out[i] = scale * in[i];
}

Member of the Helmholtz Association 12 September 2019 Slide 43 64

Kernel Launch
kernel<<<int gridDim, int blockDim>>>(...)

Parallel threads of kernel launched with triple-chevron syntax
Total number of threads, divided into

Number of blocks on the grid (gridDim)
Number of threads per block (blockDim)

Call returns immediately; kernel launch is asynchronous!
Example:
int nThreads = 32;
scale<<<N/nThreads, nThreads>>>(23, in, out, N)
Possibility for toomany threads; include termination condition into kernel!
Actual full kernel launch definition
kernel<<<dim3 gD, dim bD, size_t shared, cudaStream_t stream>>>(...)

Member of the Helmholtz Association 12 September 2019 Slide 44 64

Grid Sizes
Block and grid sizes are hardware-dependent
JUWELS: Tesla V100
Block N⃗Thread ≤ (1024(x), 1024(y), 64(z))∏

i=x,y,z N⃗
(i)
Thread ≤ 1024

Grid N⃗Blocks ≤ (2147483647(x), 65535(y), 65535(z)) = (231, 216, 216)− 1⃗

Find out yourself: deviceQuery example from CUDA Samples
Workflow: Chose 128 or 256 as block dim; calculate grid dim from problem size
int Nx = 1000, Ny = 1000;
dim3 blockDim(16, 16);
int gx = (Nx % blockDim.x == 0) ? Nx / blockDim.x : Nx / blockDim.x + 1;
int gy = (Ny % blockDim.y == 0) ? Ny / blockDim.y : Ny / blockDim.y + 1;
dim3 gridDim(gx, gy);
kernel<<<gridDim, blockDim>>>();

Member of the Helmholtz Association 12 September 2019 Slide 45 64

HIP SAXPY
From CUDA to HIP

#include <cuda_runtime.h>
__global__ void saxpy(int n, float a, float * x, float * y) {

int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < n)
y[i] = a * x[i] + y[i];

}

int a = 42;
int n = 10;
float x[n], y[n];
// fill x, y
cudaMallocManaged(&x, n * sizeof(float));
cudaMallocManaged(&y, n * sizeof(float));

saxpy_cuda<<<2, 5>>>(n, a, x, y);

cudaDeviceSynchronize();

Works on AMD
and NVIDIA GPU

s!

Member of the Helmholtz Association 12 September 2019 Slide 46 64

HIP SAXPY
From CUDA to HIP

#include <hip/hip_runtime.h>
__global__ void saxpy(int n, float a, float * x, float * y) {

int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < n)
y[i] = a * x[i] + y[i];

}

int a = 42;a
int n = 10;
float x[n], y[n];
// fill x, y
hipMallocManaged(&x, n * sizeof(float));
hipMallocManaged(&y, n * sizeof(float));

hipLaunchKernelGGL(saxpy, 2, 5, 0, 0, n, a, x, y);

hipDeviceSynchronize();

Works on AMD
and NVIDIA GPU

s!

Member of the Helmholtz Association 12 September 2019 Slide 46 64

Programming GPUs
Abstraction Libraries/DSL

Abstraction Libraries & DSLs

Libraries with ready-programmed abstractions; partly compiler/transpiler necessary
Have different backends to choose from for targeted accelerator
Between Thrust, OpenACC, and CUDA
Examples: SYCL, Kokkos, Alpaka, Futhark, C++AMP, …

Member of the Helmholtz Association 12 September 2019 Slide 48 64

https://www.khronos.org/sycl/
https://github.com/kokkos/kokkos/
https://github.com/ComputationalRadiationPhysics/alpaka
https://futhark-lang.org/
https://en.wikipedia.org/wiki/C%2B%2B_AMP

An Alternative: Kokkos
From Sandia National Laboratories

C++ library for performance portability
Data-parallel patterns, architecture-aware memory layouts, …

Kokkos::View<double*> x("X", length);
Kokkos::View<double*> y("Y", length);
double a = 2.0;

// Fill x, y

Kokkos::parallel_for(length, KOKKOS_LAMBDA (const int& i) {
x(i) = a*x(i) + y(i);

});

→ https://github.com/kokkos/kokkos/

Member of the Helmholtz Association 12 September 2019 Slide 49 64

https://github.com/kokkos/kokkos/

Another Alternative: SYCL

Extension of/upon
OpenCL
With buffers, queues,
accessors, lambdas, …
Part of programming
model for Aurora’s Intel
GPUs

→ khronos.org/sycl/

class mySaxpy;

std::vector<double> h_x(length), h_y(length);
// Fill x, y
cl::sycl::buffer<double, 1> d_x(h_x), d_y(h_y);

cl::sycl::queue queue;

queue.submit([&] (cl::sycl::handler& cgh) {
auto x_acc = d_x.get_access<cl::sycl::access::mode::read>(cgh);
auto y_acc = d_y.get_access<cl::sycl::access::mode::read>(cgh);

cgh.parallel_for<class mySaxpy>(length,
[=] (cl::sycl::id<1> idx) {

y_acc[idx] = a * x_acc[idx] + y_acc[idx];
});

});

Member of the Helmholtz Association 12 September 2019 Slide 50 64

https://www.khronos.org/sycl/

Programming GPUs
Tools

GPU Tools
The helpful helpers helping helpless (and others)

NVIDIA
cuda-gdb GDB-like command line utility for debugging

cuda-memcheck Like Valgrind’s memcheck, for checking errors in memory accesses
Nsight IDE for GPU developing, based on Eclipse (Linux, OS X) or Visual

Studio (Windows)
nvprof Command line profiler, including detailed performance counters

Visual Profiler Timeline profiling and annotated performance experiments
New Nsight Systems (timeline), Nsight Compute (kernel analysis)

OpenCL/HIP:
CodeXL Debugging, profiling.

ROCmGDB AMD’s GDB symbolic debugger
RadeonComputeProfiler Profiler for OpenCL and ROCm

Member of the Helmholtz Association 12 September 2019 Slide 52 64

https://docs.nvidia.com/cuda/cuda-gdb/index.html
https://docs.nvidia.com/cuda/cuda-memcheck/index.html
https://developer.nvidia.com/nsight-eclipse-edition
https://docs.nvidia.com/cuda/profiler-users-guide/index.html#nvprof-overview
https://docs.nvidia.com/cuda/profiler-users-guide/index.html#visual
https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-compute
http://gpuopen.com/compute-product/codexl/
https://gpuopen.com/compute-product/rocm-gdb/
https://gpuopen.com/compute-product/radeon-compute-profiler-rcp/

nvprof
Command that line

Usage: nvprof ./app

$ nvprof ./matrixMul -wA=1024 -hA=1024 -wB=1024 -hB=1024
==37064== Profiling application: ./matrixMul -wA=1024 -hA=1024 -wB=1024 -hB=1024
==37064== Profiling result:
Time(%) Time Calls Avg Min Max Name
99.19% 262.43ms 301 871.86us 863.88us 882.44us void matrixMulCUDA<int=32>(float*, float*, float*, int, int)
0.58% 1.5428ms 2 771.39us 764.65us 778.12us [CUDA memcpy HtoD]
0.23% 599.40us 1 599.40us 599.40us 599.40us [CUDA memcpy DtoH]

==37064== API calls:
Time(%) Time Calls Avg Min Max Name
61.26% 258.38ms 1 258.38ms 258.38ms 258.38ms cudaEventSynchronize
35.68% 150.49ms 3 50.164ms 914.97us 148.65ms cudaMalloc
0.73% 3.0774ms 3 1.0258ms 1.0097ms 1.0565ms cudaMemcpy
0.62% 2.6287ms 4 657.17us 655.12us 660.56us cuDeviceTotalMem
0.56% 2.3408ms 301 7.7760us 7.3810us 53.103us cudaLaunch
0.48% 2.0111ms 364 5.5250us 235ns 201.63us cuDeviceGetAttribute
0.21% 872.52us 1 872.52us 872.52us 872.52us cudaDeviceSynchronize

Member of the Helmholtz Association 12 September 2019 Slide 53 64

nvprof
Command that line

With metrics: nvprof --metrics flop_sp_efficiency ./app

$ nvprof --metrics flop_sp_efficiency ./matrixMul -wA=1024 -hA=1024 -wB=1024 -hB=1024
[Matrix Multiply Using CUDA] - Starting...
==37122== NVPROF is profiling process 37122, command: ./matrixMul -wA=1024 -hA=1024 -wB=1024 -hB=1024
GPU Device 0: "Tesla P100-SXM2-16GB" with compute capability 6.0

MatrixA(1024,1024), MatrixB(1024,1024)
Computing result using CUDA Kernel...
==37122== Some kernel(s) will be replayed on device 0 in order to collect all events/metrics.
done122== Replaying kernel "void matrixMulCUDA<int=32>(float*, float*, float*, int, int)" (0 of 2)...
Performance= 26.61 GFlop/s, Time= 80.697 msec, Size= 2147483648 Ops, WorkgroupSize= 1024 threads/block
Checking computed result for correctness: Result = PASS
==37122== Profiling application: ./matrixMul -wA=1024 -hA=1024 -wB=1024 -hB=1024
==37122== Profiling result:
==37122== Metric result:
Invocations Metric Name Metric Description Min Max Avg
Device "Tesla P100-SXM2-16GB (0)"

Kernel: void matrixMulCUDA<int=32>(float*, float*, float*, int, int)
301 flop_sp_efficiency FLOP Efficiency(Peak Single) 22.96% 23.40% 23.15%

Member of the Helmholtz Association 12 September 2019 Slide 53 64

Visual Profiler
Your new favorite tool

Member of the Helmholtz Association 12 September 2019 Slide 54 64

New Tools
20/20 Nsight

NVIDIA is phasing out support for Visual Profiler / nvprof
New tools (in beta)
Nsight Systems System timeline viewer –

https://developer.nvidia.com/nsight-systems
Nsight Compute Kernel profiler –

https://developer.nvidia.com/nsight-compute

Sc
re
en

sh
ot
sb

y
N
VI
DI
A
fro

m
th
e
w
eb

si
te
so

ft
he

re
sp
ec
tiv

e
to
ol
.

Member of the Helmholtz Association 12 September 2019 Slide 55 64

https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-compute

Wrapping Up
Summary

Summary of Acceleration Possibilities

Application

Libraries OpenACC
Directives

Programming
Languages

Drop-in
Acceleration

Easy
Acceleration

Flexible
Acceleration

Member of the Helmholtz Association 12 September 2019 Slide 57 64

Advanced Topics
Somuchmore interesting things to show!

Memory spaces (shared, pinned,…); memory transfer optimization
Atomic operations
Optimize applications for GPU architecture (access patterns, streams)
Drop-in BLAS acceleration with NVBLAS ($LD_PRELOAD)
Cooperative groups, independent thread progress
Half precision FP16
Usemultiple GPUs

On one node
Across many nodes→MPI

…
Some of that: Addressed at dedicated training courses

Cooperative Groups

Program Counter (PC), Call Stack (S)

PC
,S

PC
,S

PC
,S

PC
,S

PC
,S

PC
,S

PC
,S

PC
,S

PC
,S

PC
,S

PC
,S

PC
,S

PC
,S

PC
,S

PC
,S

PC
,S

PC
,S

PC
,S

PC
,S

PC
,S

PC
,S

Co
nv

er
ge
nc
e

O
pt
im

iz
er

Independent
Thread Progress

Member of the Helmholtz Association 12 September 2019 Slide 58 64

Wrapping Up
GPUs on JUWELS/JURECA

Compilation

CUDA Module: module load CUDA/10.1.105
Compile: nvcc file.cu
Default host compiler: g++; use nvcc_pgc++ for PGI compiler
cuBLAS: g++ file.cpp -I$CUDA_HOME/include -L$CUDA_HOME/lib64
-lcublas -lcudart

OpenACC Module: module load PGI/19.3-GCC-8.3.0
Compile: pgc++ -acc -ta=tesla file.cpp

MPI Module: module load MVAPICH2/2.3.1-GDR (also needed: GCC/8.3.0)
Enabled for CUDA (CUDA-aware); no need to copy data to host before
transfer

Member of the Helmholtz Association 12 September 2019 Slide 60 64

Running
Dedicated GPU partitions
JUWELS

--partition=gpus 46 nodes (Job limits: <1 d)
--partition=develgpus 10 nodes (Job limits: <2 h,≤ 2 nodes)

JURECA
--partition=gpus 70 nodes (Job limits: <1 d,≤ 32 nodes)

--partition=develgpus 4 nodes (Job limits: <2 h,≤ 2 nodes)
Needed: Resource configuration with --gres
--gres=gpu:4
--gres=mem1024,gpu:2 --partition=vis only JURECA

→ See online documentation
Also: Online job reports (interactive, PDFs)

Member of the Helmholtz Association 12 September 2019 Slide 61 64

http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JURECA/UserInfo/QuickIntroduction.html?nn=1803700#doc1803722bodyText8
https://www.fz-juelich.de/ias/jsc/EN/Expertise/Support/Software/LLview/jobreporting_node.html

Example

96 tasks in total, running on 4 nodes
Per node: 4 GPUs
#!/bin/bash -x
#SBATCH --nodes=4
#SBATCH --ntasks=96
#SBATCH --ntasks-per-node=24
#SBATCH --output=gpu-out.%j
#SBATCH --error=gpu-err.%j
#SBATCH --time=00:15:00

#SBATCH --partition=gpus
#SBATCH --gres=gpu:4

srun ./gpu-prog

Member of the Helmholtz Association 12 September 2019 Slide 62 64

Wrapping Up
Conclusion

Conclusion

GPUs can improve your performancemany-fold
For a fitting, parallelizable application
Libraries are easiest
Direct programming (plain CUDA, HIP) is most powerful
OpenACC/OpenMP is somewhere in between (and portable)
Many abstraction layers available (mostly using C++)
There are many tools helping the programmer

→ Download JSC Guest Student OpenACC Hands-On 2019 at http://bit.ly/gsp-oacc

Thank you

for your att
ention!

a.herten@fz-juelich.de

Member of the Helmholtz Association 12 September 2019 Slide 64 64

http://bit.ly/gsp-oacc
mailto:a.herten@fz-juelich.de

Appendix

Appendix
Further Reading & Links
GPU Performances
Glossary
References

Member of the Helmholtz Association 12 September 2019 Slide 2 13

Further Reading & Links
More!

A discussion of SIMD, SIMT, SMT by Y. Kreinin.
NVIDIA’s documentation: docs.nvidia.com
NVIDIA’s Parallel For All blog
SYCL Hello World, SYCL Vector Addition

Member of the Helmholtz Association 12 September 2019 Slide 3 13

http://yosefk.com/blog/simd-simt-smt-parallelism-in-nvidia-gpus.html
docs.nvidia.com
https://devblogs.nvidia.com/parallelforall/
https://www.codingame.com/playgrounds/48226/introduction-to-sycl/hello-world
https://www.codeplay.com/portal/sycl-tutorial-1-the-vector-addition

Volta Performance
GV100 GPU Hardware Architecture In-Depth

The World’s Most Advanced Data Center GPU WP-08608-001_v01 | 10

Table 1. Comparison of NVIDIA Tesla GPUs

Tesla Product Tesla K40 Tesla M40 Tesla P100 Tesla V100
GPU GK180 (Kepler) GM200 (Maxwell) GP100 (Pascal) GV100 (Volta)
SMs 15 24 56 80
TPCs 15 24 28 40
FP32 Cores / SM 192 128 64 64
FP32 Cores / GPU 2880 3072 3584 5120
FP64 Cores / SM 64 4 32 32
FP64 Cores / GPU 960 96 1792 2560
Tensor Cores / SM NA NA NA 8
Tensor Cores / GPU NA NA NA 640
GPU Boost Clock 810/875 MHz 1114 MHz 1480 MHz 1462 MHz
Peak FP32 TFLOPS1 5 6.8 10.6 15
Peak FP64 TFLOPS1 1.7 .21 5.3 7.5
Peak Tensor TFLOPS1 NA NA NA 120
Texture Units 240 192 224 320
Memory Interface 384-bit GDDR5 384-bit GDDR5 4096-bit HBM2 4096-bit HBM2
Memory Size Up to 12 GB Up to 24 GB 16 GB 16 GB
L2 Cache Size 1536 KB 3072 KB 4096 KB 6144 KB
Shared Memory Size /
SM

16 KB/32 KB/48
KB

96 KB 64 KB Configurable up
to 96 KB

Register File Size / SM 256 KB 256 KB 256 KB 256KB
Register File Size /
GPU

3840 KB 6144 KB 14336 KB 20480 KB

TDP 235 Watts 250 Watts 300 Watts 300 Watts
Transistors 7.1 billion 8 billion 15.3 billion 21.1 billion
GPU Die Size 551 mm² 601 mm² 610 mm² 815 mm²
Manufacturing
Process

28 nm 28 nm 16 nm FinFET+ 12 nm FFN

1 Peak TFLOPS rates are based on GPU Boost Clock

Figure: Tesla V100 performance characteristics in comparison [9]

Member of the Helmholtz Association 12 September 2019 Slide 4 13

Appendix
Glossary & References

Glossary I

AMD Manufacturer of CPUs and GPUs. 3, 33, 38, 42, 56, 71, 72, 78, 98, 100
API A programmatic interface to software by well-defined functions. Short for

application programming interface. 51, 56, 99
ATI Canada-based GPUsmanufacturing company; bought by AMD in 2006. 3

CUDA Computing platform for GPUs from NVIDIA. Provides, among others, CUDA
C/C++. 3, 42, 49, 56, 57, 58, 70, 71, 72, 74, 87, 91, 99

DSL A Domain-Specific Language is a specialization of a more general language to a
specific domain. 2, 73, 74

Member of the Helmholtz Association 12 September 2019 Slide 6 13

Glossary II

HIP GPU programmingmodel by AMD to target their own and NVIDIA GPUswith one
combined language. Short for Heterogeneous-compute Interface for Portability.
56, 71, 72, 78, 91

JSC Jülich Supercomputing Centre, the supercomputing institute of
Forschungszentrum Jülich, Germany. 98

JURECA Amulti-purpose supercomputer with 1800 nodes at JSC. 7, 86, 88
JUWELS Jülich’s new supercomputer, the successor of JUQUEEN. 8, 70, 86, 88

MPI The Message Passing Interface, a API definition for multi-node computing. 85, 87

NVIDIA US technology company creating GPUs. 3, 7, 8, 33, 38, 56, 71, 72, 78, 82, 94, 97,
98, 99, 100, 101

Member of the Helmholtz Association 12 September 2019 Slide 7 13

Glossary III

NVLink NVIDIA’s communication protocol connecting CPU↔ GPU and GPU↔ GPUwith
high bandwidth. 101

OpenACC Directive-based programming, primarily for many-core machines. 49, 52, 53, 54,
74, 87, 91

OpenCL The Open Computing Language. Framework for writing code for heterogeneous
architectures (CPU, GPU, DSP, FPGA). The alternative to CUDA. 3, 49, 56, 76, 78

OpenGL The Open Graphics Library, an API for rendering graphics across different
hardware architectures. 3

OpenMP Directive-based programming, primarily for multi-threadedmachines. 49, 52, 91

POWER CPU architecture from IBM, earlier: PowerPC. See also POWER8. 100

Member of the Helmholtz Association 12 September 2019 Slide 8 13

Glossary IV

POWER8 Version 8 of IBM’s POWERprocessor, available also under the OpenPOWER
Foundation. 99

ROCm AMD software stack and platform to program AMD GPUs. Short for Radeon Open
Compute (Radeon is the GPU product line of AMD). 56, 78

SAXPY Single-precision A× X+ Y. A simple code example of scaling a vector and adding
an offset. 35, 57, 58

Tesla The GPU product line for general purpose computing computing of NVIDIA. 7, 8,
33, 70

Thrust A parallel algorithms library for (among others) GPUs. See
https://thrust.github.io/. 42, 49

Member of the Helmholtz Association 12 September 2019 Slide 9 13

https://thrust.github.io/

Glossary V

V100 A large GPUwith the Volta architecture from NVIDIA. It employs NVLink 2 as its
interconnect and has fast HBM2memory. Additionally, it features Tensorcores for
Deep Learning and Independent Thread Scheduling. 33, 70

Volta GPU architecture from NVIDIA (announced 2017). 25, 33, 101

Member of the Helmholtz Association 12 September 2019 Slide 10 13

References I

[2] Kenneth E. Hoff III et al. “Fast Computation of Generalized Voronoi Diagrams Using
Graphics Hardware”. In: Proceedings of the 26th Annual Conference on Computer
Graphics and Interactive Techniques. SIGGRAPH ’99. New York, NY, USA: ACM
Press/Addison-Wesley Publishing Co., 1999, pp. 277–286. ISBN: 0-201-48560-5. DOI:
10.1145/311535.311567. URL: http://dx.doi.org/10.1145/311535.311567
(page 3).

[3] Chris McClanahan. “History and Evolution of GPU Architecture”. In: A Survey Paper
(2010). URL: http://mcclanahoochie.com/blog/wp-
content/uploads/2011/03/gpu-hist-paper.pdf (page 3).

[4] Jack Dongarra et al. TOP500. June 2019. URL:
https://www.top500.org/lists/2019/06/ (page 3).

Member of the Helmholtz Association 12 September 2019 Slide 11 13

https://doi.org/10.1145/311535.311567
http://dx.doi.org/10.1145/311535.311567
http://mcclanahoochie.com/blog/wp-content/uploads/2011/03/gpu-hist-paper.pdf
http://mcclanahoochie.com/blog/wp-content/uploads/2011/03/gpu-hist-paper.pdf
https://www.top500.org/lists/2019/06/

References II

[5] Jack Dongarra et al. Green500. June 2019. URL:
https://www.top500.org/green500/lists/2019/06/ (page 3).

[6] Karl Rupp. Pictures: CPU/GPU Performance Comparison. URL:
https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-
characteristics-over-time/ (pages 4, 5).

[10] Wes Breazell. Picture: Wizard. URL:
https://thenounproject.com/wes13/collection/its-a-wizards-world/
(pages 36, 37, 41).

Member of the Helmholtz Association 12 September 2019 Slide 12 13

https://www.top500.org/green500/lists/2019/06/
https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/
https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/
https://thenounproject.com/wes13/collection/its-a-wizards-world/

References: Images, Graphics I

[1] Igor Ovsyannykov. Yarn. Freely available at Unsplash. URL:
https://unsplash.com/photos/hvILKk7SlH4.

[7] Mark Lee. Picture: kawasaki ninja. URL:
https://www.flickr.com/photos/pochacco20/39030210/ (page 10).

[8] Shearings Holidays. Picture: Shearings coach 636. URL:
https://www.flickr.com/photos/shearings/13583388025/ (page 10).

[9] Nvidia Corporation. Pictures: Volta GPU. Volta Architecture Whitepaper. URL:
https://images.nvidia.com/content/volta-architecture/pdf/Volta-
Architecture-Whitepaper-v1.0.pdf (pages 23, 24, 95).

Member of the Helmholtz Association 12 September 2019 Slide 13 13

https://unsplash.com/photos/hvILKk7SlH4
https://www.flickr.com/photos/pochacco20/39030210/
https://www.flickr.com/photos/shearings/13583388025/
https://images.nvidia.com/content/volta-architecture/pdf/Volta-Architecture-Whitepaper-v1.0.pdf
https://images.nvidia.com/content/volta-architecture/pdf/Volta-Architecture-Whitepaper-v1.0.pdf

	Outline
	Motivation
	Platform
	Hardware
	Features
	High Throughput
	Summary
	Vendor Comparison

	Programming GPUs
	Libraries
	About GPU Programming
	Directives
	Languages
	Abstraction Libraries/*dsl
	Tools

	Wrapping Up
	Summary
	Advanced Topics
	GPUs on JUWELS/JURECA
	Conclusion

	Appendix
	Appendix
	Further Reading & Links
	*gpu Performances
	Glossary & References
	Glossary

	Glossary
	References

	References
	References

