000868234 001__ 868234
000868234 005__ 20250129092506.0
000868234 0247_ $$2doi$$a10.1109/TNS.2019.2923382
000868234 0247_ $$2ISSN$$a0018-9499
000868234 0247_ $$2ISSN$$a1558-1578
000868234 0247_ $$2WOS$$aWOS:000481936800004
000868234 0247_ $$2altmetric$$aaltmetric:73119781
000868234 037__ $$aFZJ-2019-06795
000868234 082__ $$a620
000868234 1001_ $$0P:(DE-Juel1)156472$$aJokhovets, L.$$b0$$eCorresponding author
000868234 245__ $$aImproved Rise Approximation Method for Pulse Arrival Timing
000868234 260__ $$aNew York, NY$$bIEEE$$c2019
000868234 3367_ $$2DRIVER$$aarticle
000868234 3367_ $$2DataCite$$aOutput Types/Journal article
000868234 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1636550634_7676
000868234 3367_ $$2BibTeX$$aARTICLE
000868234 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000868234 3367_ $$00$$2EndNote$$aJournal Article
000868234 520__ $$aThis paper describes the deduction of pulse arrivaltimes from digital waveforms recorded with a multichannel data-acquisition (DAQ) system. A linear rise approximation (LRA)arrival timing method provides restricted timing resolution forpulses with nonlinear rise. It reaches 1/20th of the samplingperiod, if the relation between signal shaping and sampling rate isoptimized. We introduce a nonlinear rise approximation (nLRA),which reduces the sampling phase error (SPE) down to lessthan 1/100th of the sampling period. The proposed timingalgorithm uses a single free parameter that can easily be adjustedfor various radiation detectors. The technique permits using arather slow pulse shaping and low sampling rates, thus stronglyreducing power consumption and the costs of the system. A high-density DAQ system integrating over 2000 channels inside anOpenVPX crate is presented. A prototype has been tested in theproton beam at cooler synchrotron (COSY) at Jülich ResearchCenter (Germany).
000868234 536__ $$0G:(DE-HGF)POF3-631$$a631 - Accelerator R & D (POF3-631)$$cPOF3-631$$fPOF III$$x0
000868234 588__ $$aDataset connected to CrossRef
000868234 7001_ $$0P:(DE-Juel1)130632$$aErven, A.$$b1
000868234 7001_ $$0P:(DE-Juel1)159350$$aGrewing, C.$$b2
000868234 7001_ $$0P:(DE-Juel1)156322$$aHerzkamp, M.$$b3
000868234 7001_ $$0P:(DE-Juel1)131225$$aKulessa, P.$$b4
000868234 7001_ $$0P:(DE-Juel1)131276$$aOhm, H.$$b5
000868234 7001_ $$0P:(DE-HGF)0$$aPysz, K.$$b6
000868234 7001_ $$0P:(DE-Juel1)131301$$aRitman, J.$$b7
000868234 7001_ $$0P:(DE-Juel1)131329$$aSerdyuk, V.$$b8
000868234 7001_ $$0P:(DE-Juel1)133944$$aStreun, M.$$b9
000868234 7001_ $$0P:(DE-Juel1)142562$$aWaasen, S. V.$$b10
000868234 7001_ $$0P:(DE-Juel1)131376$$aWintz, P.$$b11
000868234 773__ $$0PERI:(DE-600)2025398-9$$a10.1109/TNS.2019.2923382$$gVol. 66, no. 8, p. 1942 - 1951$$n8$$p1942 - 1951$$tIEEE transactions on nuclear science$$v66$$x1558-1578$$y2019
000868234 8564_ $$uhttps://juser.fz-juelich.de/record/868234/files/08737743-1.pdf$$yRestricted
000868234 8564_ $$uhttps://juser.fz-juelich.de/record/868234/files/08737743-1.pdf?subformat=pdfa$$xpdfa$$yRestricted
000868234 909CO $$ooai:juser.fz-juelich.de:868234$$pVDB
000868234 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156472$$aForschungszentrum Jülich$$b0$$kFZJ
000868234 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130632$$aForschungszentrum Jülich$$b1$$kFZJ
000868234 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159350$$aForschungszentrum Jülich$$b2$$kFZJ
000868234 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156322$$aForschungszentrum Jülich$$b3$$kFZJ
000868234 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131225$$aForschungszentrum Jülich$$b4$$kFZJ
000868234 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131301$$aForschungszentrum Jülich$$b7$$kFZJ
000868234 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131329$$aForschungszentrum Jülich$$b8$$kFZJ
000868234 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133944$$aForschungszentrum Jülich$$b9$$kFZJ
000868234 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142562$$aForschungszentrum Jülich$$b10$$kFZJ
000868234 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131376$$aForschungszentrum Jülich$$b11$$kFZJ
000868234 9131_ $$0G:(DE-HGF)POF3-631$$1G:(DE-HGF)POF3-630$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMaterie und Technologie$$vAccelerator R & D$$x0
000868234 9141_ $$y2019
000868234 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bIEEE T NUCL SCI : 2017
000868234 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000868234 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000868234 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000868234 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000868234 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000868234 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000868234 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000868234 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000868234 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000868234 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000868234 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000868234 920__ $$lyes
000868234 9201_ $$0I:(DE-Juel1)ZEA-2-20090406$$kZEA-2$$lZentralinstitut für Elektronik$$x0
000868234 9201_ $$0I:(DE-Juel1)IKP-1-20111104$$kIKP-1$$lExperimentelle Hadronstruktur$$x1
000868234 980__ $$ajournal
000868234 980__ $$aVDB
000868234 980__ $$aI:(DE-Juel1)ZEA-2-20090406
000868234 980__ $$aI:(DE-Juel1)IKP-1-20111104
000868234 980__ $$aUNRESTRICTED
000868234 981__ $$aI:(DE-Juel1)PGI-4-20110106