001 | 868234 | ||
005 | 20250129092506.0 | ||
024 | 7 | _ | |a 10.1109/TNS.2019.2923382 |2 doi |
024 | 7 | _ | |a 0018-9499 |2 ISSN |
024 | 7 | _ | |a 1558-1578 |2 ISSN |
024 | 7 | _ | |a WOS:000481936800004 |2 WOS |
024 | 7 | _ | |a altmetric:73119781 |2 altmetric |
037 | _ | _ | |a FZJ-2019-06795 |
082 | _ | _ | |a 620 |
100 | 1 | _ | |a Jokhovets, L. |0 P:(DE-Juel1)156472 |b 0 |e Corresponding author |
245 | _ | _ | |a Improved Rise Approximation Method for Pulse Arrival Timing |
260 | _ | _ | |a New York, NY |c 2019 |b IEEE |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1636550634_7676 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a This paper describes the deduction of pulse arrivaltimes from digital waveforms recorded with a multichannel data-acquisition (DAQ) system. A linear rise approximation (LRA)arrival timing method provides restricted timing resolution forpulses with nonlinear rise. It reaches 1/20th of the samplingperiod, if the relation between signal shaping and sampling rate isoptimized. We introduce a nonlinear rise approximation (nLRA),which reduces the sampling phase error (SPE) down to lessthan 1/100th of the sampling period. The proposed timingalgorithm uses a single free parameter that can easily be adjustedfor various radiation detectors. The technique permits using arather slow pulse shaping and low sampling rates, thus stronglyreducing power consumption and the costs of the system. A high-density DAQ system integrating over 2000 channels inside anOpenVPX crate is presented. A prototype has been tested in theproton beam at cooler synchrotron (COSY) at Jülich ResearchCenter (Germany). |
536 | _ | _ | |a 631 - Accelerator R & D (POF3-631) |0 G:(DE-HGF)POF3-631 |c POF3-631 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Erven, A. |0 P:(DE-Juel1)130632 |b 1 |
700 | 1 | _ | |a Grewing, C. |0 P:(DE-Juel1)159350 |b 2 |
700 | 1 | _ | |a Herzkamp, M. |0 P:(DE-Juel1)156322 |b 3 |
700 | 1 | _ | |a Kulessa, P. |0 P:(DE-Juel1)131225 |b 4 |
700 | 1 | _ | |a Ohm, H. |0 P:(DE-Juel1)131276 |b 5 |
700 | 1 | _ | |a Pysz, K. |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Ritman, J. |0 P:(DE-Juel1)131301 |b 7 |
700 | 1 | _ | |a Serdyuk, V. |0 P:(DE-Juel1)131329 |b 8 |
700 | 1 | _ | |a Streun, M. |0 P:(DE-Juel1)133944 |b 9 |
700 | 1 | _ | |a Waasen, S. V. |0 P:(DE-Juel1)142562 |b 10 |
700 | 1 | _ | |a Wintz, P. |0 P:(DE-Juel1)131376 |b 11 |
773 | _ | _ | |a 10.1109/TNS.2019.2923382 |g Vol. 66, no. 8, p. 1942 - 1951 |0 PERI:(DE-600)2025398-9 |n 8 |p 1942 - 1951 |t IEEE transactions on nuclear science |v 66 |y 2019 |x 1558-1578 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/868234/files/08737743-1.pdf |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/868234/files/08737743-1.pdf?subformat=pdfa |x pdfa |y Restricted |
909 | C | O | |p VDB |o oai:juser.fz-juelich.de:868234 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)156472 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)130632 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)159350 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)156322 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)131225 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)131301 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)131329 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)133944 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 10 |6 P:(DE-Juel1)142562 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 11 |6 P:(DE-Juel1)131376 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Materie und Technologie |1 G:(DE-HGF)POF3-630 |0 G:(DE-HGF)POF3-631 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-600 |4 G:(DE-HGF)POF |v Accelerator R & D |x 0 |
914 | 1 | _ | |y 2019 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b IEEE T NUCL SCI : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)ZEA-2-20090406 |k ZEA-2 |l Zentralinstitut für Elektronik |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)IKP-1-20111104 |k IKP-1 |l Experimentelle Hadronstruktur |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)ZEA-2-20090406 |
980 | _ | _ | |a I:(DE-Juel1)IKP-1-20111104 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)PGI-4-20110106 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|