001     868234
005     20250129092506.0
024 7 _ |a 10.1109/TNS.2019.2923382
|2 doi
024 7 _ |a 0018-9499
|2 ISSN
024 7 _ |a 1558-1578
|2 ISSN
024 7 _ |a WOS:000481936800004
|2 WOS
024 7 _ |a altmetric:73119781
|2 altmetric
037 _ _ |a FZJ-2019-06795
082 _ _ |a 620
100 1 _ |a Jokhovets, L.
|0 P:(DE-Juel1)156472
|b 0
|e Corresponding author
245 _ _ |a Improved Rise Approximation Method for Pulse Arrival Timing
260 _ _ |a New York, NY
|c 2019
|b IEEE
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1636550634_7676
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a This paper describes the deduction of pulse arrivaltimes from digital waveforms recorded with a multichannel data-acquisition (DAQ) system. A linear rise approximation (LRA)arrival timing method provides restricted timing resolution forpulses with nonlinear rise. It reaches 1/20th of the samplingperiod, if the relation between signal shaping and sampling rate isoptimized. We introduce a nonlinear rise approximation (nLRA),which reduces the sampling phase error (SPE) down to lessthan 1/100th of the sampling period. The proposed timingalgorithm uses a single free parameter that can easily be adjustedfor various radiation detectors. The technique permits using arather slow pulse shaping and low sampling rates, thus stronglyreducing power consumption and the costs of the system. A high-density DAQ system integrating over 2000 channels inside anOpenVPX crate is presented. A prototype has been tested in theproton beam at cooler synchrotron (COSY) at Jülich ResearchCenter (Germany).
536 _ _ |a 631 - Accelerator R & D (POF3-631)
|0 G:(DE-HGF)POF3-631
|c POF3-631
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Erven, A.
|0 P:(DE-Juel1)130632
|b 1
700 1 _ |a Grewing, C.
|0 P:(DE-Juel1)159350
|b 2
700 1 _ |a Herzkamp, M.
|0 P:(DE-Juel1)156322
|b 3
700 1 _ |a Kulessa, P.
|0 P:(DE-Juel1)131225
|b 4
700 1 _ |a Ohm, H.
|0 P:(DE-Juel1)131276
|b 5
700 1 _ |a Pysz, K.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Ritman, J.
|0 P:(DE-Juel1)131301
|b 7
700 1 _ |a Serdyuk, V.
|0 P:(DE-Juel1)131329
|b 8
700 1 _ |a Streun, M.
|0 P:(DE-Juel1)133944
|b 9
700 1 _ |a Waasen, S. V.
|0 P:(DE-Juel1)142562
|b 10
700 1 _ |a Wintz, P.
|0 P:(DE-Juel1)131376
|b 11
773 _ _ |a 10.1109/TNS.2019.2923382
|g Vol. 66, no. 8, p. 1942 - 1951
|0 PERI:(DE-600)2025398-9
|n 8
|p 1942 - 1951
|t IEEE transactions on nuclear science
|v 66
|y 2019
|x 1558-1578
856 4 _ |u https://juser.fz-juelich.de/record/868234/files/08737743-1.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/868234/files/08737743-1.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |p VDB
|o oai:juser.fz-juelich.de:868234
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)156472
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130632
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)159350
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)156322
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131225
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)131301
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)131329
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)133944
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)142562
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)131376
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Materie und Technologie
|1 G:(DE-HGF)POF3-630
|0 G:(DE-HGF)POF3-631
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-600
|4 G:(DE-HGF)POF
|v Accelerator R & D
|x 0
914 1 _ |y 2019
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b IEEE T NUCL SCI : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ZEA-2-20090406
|k ZEA-2
|l Zentralinstitut für Elektronik
|x 0
920 1 _ |0 I:(DE-Juel1)IKP-1-20111104
|k IKP-1
|l Experimentelle Hadronstruktur
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ZEA-2-20090406
980 _ _ |a I:(DE-Juel1)IKP-1-20111104
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-4-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21