000868240 001__ 868240
000868240 005__ 20240711114135.0
000868240 0247_ $$2doi$$a10.1016/j.nme.2018.09.003
000868240 0247_ $$2Handle$$a2128/23719
000868240 0247_ $$2WOS$$aWOS:000454165000013
000868240 037__ $$aFZJ-2019-06800
000868240 082__ $$a624
000868240 1001_ $$00000-0003-1062-8101$$aWeckmann, A.$$b0$$eCorresponding author
000868240 245__ $$aReview on global migration, fuel retention and modelling after TEXTOR decommission
000868240 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2018
000868240 3367_ $$2DRIVER$$aarticle
000868240 3367_ $$2DataCite$$aOutput Types/Journal article
000868240 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1576756163_22301
000868240 3367_ $$2BibTeX$$aARTICLE
000868240 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000868240 3367_ $$00$$2EndNote$$aJournal Article
000868240 520__ $$aBefore decommissioning of the TEXTOR tokamak in 2013, the machine was conditioned with a comprehensive migration experiment where MoF6 and 15N2 were injected on the very last operation day. Thereafter, all plasma-facing components (PFCs) were available for extensive studies of both local and global migration of impurities – Mo, W, Inconel alloy constituents, 15 N, F – and fuel retention studies. Measurements were performed on 140 limiter tiles out of 864 throughout the whole machine to map global transport. One fifth of the introduced molybdenum could be found. Wherever possible, the findings are compared to results obtained previously in other machines. This review incorporates both published and unpublished results from this TEXTOR study and combines findings with analytical methods as well as modelling results from two codes, ERO and ASCOT. The main findings are:• Both local and global molybdenum transport can be explained by toroidal plasma flow and drift. The suggested transport scheme for molybdenum holds also for other analysed species, namely tungsten from previous experiments and medium-Z metals (Cr-Cu) introduced on various occasions.• Analytical interpretation of several deposition profile features is possible with basic geometrical and plasma physics considerations. These are deposition profiles on the collector probe, the lower part of the inner bumper limiter, the poloidal cross-section of the inner bumper limiter, and the poloidal limiter.• Any deposition pattern found in this TEXTOR study, including fuel retention, has neither poloidal nor toroidal symmetry, which is often assumed when determining deposition profiles on global scale.• Fuel retention is highly inhomogeneous due to local variation of plasma parameters – by auxiliary heating systems and impurity injection – and PFC temperature.• Local modelling with ERO yields good qualitative agreement but too high local deposition efficiency.• Global modelling with ASCOT shows that the radial electric field and source form have a high impact on global deposition patterns, while toroidal flow has little influence. Some of the experimental findings could be reproduced. Still, qualitative differences between simulated and experimental global deposition patterns remain.The review closes with lessons learnt during this extensive TEXTOR study which might be helpful for future scientific exploitation of other tokamaks to be decommissioned.
000868240 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000868240 588__ $$aDataset connected to CrossRef
000868240 7001_ $$0P:(DE-HGF)0$$aPetersson, P.$$b1
000868240 7001_ $$0P:(DE-HGF)0$$aRubel, M.$$b2
000868240 7001_ $$00000-0001-9299-3262$$aStröm, P.$$b3
000868240 7001_ $$0P:(DE-HGF)0$$aKurki-Suonio, T.$$b4
000868240 7001_ $$00000-0001-9156-2559$$aSärkimäki, K.$$b5
000868240 7001_ $$0P:(DE-Juel1)2620$$aKirschner, A.$$b6$$eCorresponding author
000868240 7001_ $$0P:(DE-Juel1)130070$$aKreter, A.$$b7
000868240 7001_ $$0P:(DE-Juel1)129976$$aBrezinsek, S.$$b8
000868240 7001_ $$0P:(DE-Juel1)165905$$aRomazanov, J.$$b9
000868240 7001_ $$0P:(DE-Juel1)130193$$aWienhold, P.$$b10
000868240 7001_ $$0P:(DE-Juel1)130122$$aPospieszczyk, A.$$b11
000868240 7001_ $$0P:(DE-HGF)0$$aHakola, A.$$b12
000868240 7001_ $$0P:(DE-HGF)0$$aAirila, M.$$b13
000868240 773__ $$0PERI:(DE-600)2808888-8$$a10.1016/j.nme.2018.09.003$$gVol. 17, p. 83 - 112$$p83 - 112$$tNuclear materials and energy$$v17$$x2352-1791$$y2018
000868240 8564_ $$uhttps://juser.fz-juelich.de/record/868240/files/1-s2.0-S2352179118300267-main.pdf$$yOpenAccess
000868240 8564_ $$uhttps://juser.fz-juelich.de/record/868240/files/1-s2.0-S2352179118300267-main.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000868240 909CO $$ooai:juser.fz-juelich.de:868240$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000868240 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)2620$$aForschungszentrum Jülich$$b6$$kFZJ
000868240 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130070$$aForschungszentrum Jülich$$b7$$kFZJ
000868240 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129976$$aForschungszentrum Jülich$$b8$$kFZJ
000868240 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165905$$aForschungszentrum Jülich$$b9$$kFZJ
000868240 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130193$$aForschungszentrum Jülich$$b10$$kFZJ
000868240 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130122$$aForschungszentrum Jülich$$b11$$kFZJ
000868240 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000868240 9141_ $$y2019
000868240 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000868240 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000868240 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000868240 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index
000868240 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000868240 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000868240 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000868240 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review
000868240 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000868240 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000868240 9801_ $$aFullTexts
000868240 980__ $$ajournal
000868240 980__ $$aVDB
000868240 980__ $$aUNRESTRICTED
000868240 980__ $$aI:(DE-Juel1)IEK-4-20101013
000868240 981__ $$aI:(DE-Juel1)IFN-1-20101013