001     868244
005     20240708132903.0
020 _ _ |a 9780081027264
024 7 _ |a 10.1016/B978-0-08-102726-4.00001-6
|2 doi
037 _ _ |a FZJ-2019-06803
100 1 _ |a Bakan, Emine
|0 P:(DE-Juel1)136812
|b 0
|e Corresponding author
|u fzj
245 _ _ |a High-temperature materials for power generation in gas turbines
260 _ _ |a Amsterdam, Oxford, Cambridge (USA)
|c 2020
|b Elsevier
295 1 0 |a Advanced Ceramics for Energy Conversion and Storage
300 _ _ |a 3-62
336 7 _ |a BOOK_CHAPTER
|2 ORCID
336 7 _ |a Book Section
|0 7
|2 EndNote
336 7 _ |a bookPart
|2 DRIVER
336 7 _ |a INBOOK
|2 BibTeX
336 7 _ |a Output Types/Book chapter
|2 DataCite
336 7 _ |a Contribution to a book
|b contb
|m contb
|0 PUB:(DE-HGF)7
|s 1578650577_2395
|2 PUB:(DE-HGF)
490 0 _ |a Elsevier Series on Advanced Ceramic Materials
520 _ _ |a The chapter describes the different aspects of ceramic materials in gas turbines. The operation conditions such as high-pressure ratio and high temperatures result in improved efficiencies and make necessary the use of materials with high-temperature capability. In addition to the often used single-crystal alloys ceramic materials are discussed. Different bulk ceramics, for example, based on silicon nitride are described. A special focus is laid on ceramic matric composites, both oxide and nonoxide-based materials, which are of increasing interest for gas-turbine applications.In addition to the structural applications ceramics are also often used as coating material. Standard coating processes for protective coatings in gas turbines are described. Furthermore, thermal barrier coatings, a widely used coating system in gas turbines, and environmental barrier coatings as protective coatings for ceramic matrix composites are discussed in detail. Finally, also degradation and failure modes for the different high-temperature coating systems are the topics of this
536 _ _ |a 113 - Methods and Concepts for Material Development (POF3-113)
|0 G:(DE-HGF)POF3-113
|c POF3-113
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef Book
700 1 _ |a Mack, Daniel E.
|0 P:(DE-Juel1)129630
|b 1
|u fzj
700 1 _ |a Mauer, Georg
|0 P:(DE-Juel1)129633
|b 2
|u fzj
700 1 _ |a Vaßen, Robert
|0 P:(DE-Juel1)129670
|b 3
|u fzj
700 1 _ |a Lamon, Jacques
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Padture, Nitin P.
|0 P:(DE-HGF)0
|b 5
773 _ _ |a 10.1016/B978-0-08-102726-4.00001-6
909 C O |o oai:juser.fz-juelich.de:868244
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)136812
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129630
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129633
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129670
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|2 G:(DE-HGF)POF3-100
|v Methods and Concepts for Material Development
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 _ _ |a contb
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21