

RWITHAACHEN UNIVERSITY

SEARCH FOR ELECTRIC DIPOLE MOMENTS AT COSY IN JÜLICH – SPIN-TRACKING SIMULATIONS USING BMAD

V. Poncza¹, A. Lehrach^{1,2}, Institut für Kernphysik 4, Forschungszentrum Jülich, 52425 Jülich, Germany, ¹also at III. Physikalisches Institut B, RWTH Aachen University ²and JARA-FAME, 52056 Aachen, Germany on behalf of the JEDI Collaboration

Motivation

- Measure Electric Dipole Moment(EDM) of charged hadrons atCOSY
- Vertical spin build-up as a measure of EDM
- EDM-like signals due tosystematic effects
- > Spin-tracking simulations needed to disentangle systematic effects

from real EDM signal

Spin Dynamics

$$\frac{d\vec{S}}{dt} = (\Omega_{MDM} + \Omega_{EDM}) \times \vec{S} = \left(\frac{q}{m}G\vec{B} + \frac{q\eta}{2m}\vec{\beta} \times \vec{B}\right) \times \vec{S}$$

$$\vec{d} = \eta \cdot \frac{q}{2mc}\vec{S} \quad \text{and} \quad \tan(\xi_{EDM}) = \frac{\eta\beta}{2G}$$
[2]

- > Spin rotates around invariant spin axis \vec{n}
- > Invariant spin axis is tilted by
 - the electric dipole moment
 - systematic effects (i.a. misaligned magnets)

Invariant Spin Axis

- ➤ Track reference particle for several turns using the Bmad Software Library [1]
- \triangleright Calculate the normal vector \vec{n}_i for each possible combination of three spin vectors
- \triangleright The invariant spin axis $\langle \vec{n} \rangle$ is the mean of all normal vectors

benchmarking:

Input:
$$\eta = 0.0002 \implies \text{theory: } n_x = -0.32127 \cdot 10^{-3}, \ n_z = 0$$

Output:
$$\langle \vec{n} \rangle = \begin{pmatrix} -0.321269108 \cdot 10^{-3} \pm 7.636 \cdot 10^{-9} \\ 0.999999948393 \pm 2.5 \cdot 10^{-12} \\ 2.568 \cdot 10^{-9} \pm 1.6878 \cdot 10^{-8} \end{pmatrix}$$

Experimental Situation

EDM resonance strength:
$$\varepsilon_{EDM} = \frac{\Omega_{P_y}}{\Omega_{rev}}$$

$$\varepsilon_{EDM}^2 \propto A \cdot (\phi_{WF} - \phi_0)^2 + B \cdot \left(\frac{\chi_{Sol}}{2\sin(\pi \nu_s)} + \chi_0\right)^2 [3]$$

Basic idea:

- \succ Fit point of minimal resonance strength (ϕ_0, χ_0)
- $\rightarrow \phi_0$ is a measure of the EDM + systematic effects

Simulation: $\eta = 0$ + magnet misalignments

Simulation: $\phi_0 = 0.15 \pm 0.02$ mrad, $\chi_0 = 0.01 \pm 0.01$ mrad Measurement: $\phi_0 = -3.7 \pm 0.04$ mrad, $\chi_0 = -6.96 \pm 0.04$ mrad

⇒ unknown longitudinal field components

Summary & Outlook

- The COSY ring is modeled using Bmad
- The implemented method to determine the invariant spin axis is in agreement with theoretical predictions
- ➤ Simulating the experimental situation and comparing the results to the measurement show a lack of knowledge of the net longitudinal field in COSY
- ➤ Possible sources of longitudinal fields are fringe fields and the narrow positioning of the COSY magnets which will be added to the model

References

- [1] D. Sagan, "Bmad: A relativistic charged particle simulation library", Nuclear Instruments and Methods in Physics Research A, vol. 558, pp. 356-359, 2006.
- [2] T. Fukuyama and A. J. Silenko, "Derivation of Generalized Thomas Bargmann-Michel-Telegdi Equation for a Particle with Electric Dipole Moment", Int. J. Mod. Phys. A28, p.1350147, 2013.
- [3] A. Saleev, N.N. Nikolaev, and F. Rathmann, "JEDI and RF Wien Filter Driven Spin Dynamics", unpublished.