Benchmarking the Quantum Approximate **Optimization Algorithm**

Madita Willsch^{1,2}, Dennis Willsch^{1,2}, Fengping Jin¹, Hans De Raedt³, Kristel Michielsen^{1,2}

¹ Institute for Advanced Simulation, Jülich Supercomputing Centre, Forschungszentrum Jülich, D-52425 Jülich, Germany ² RWTH Aachen University, D-52056 Aachen, Germany

³ Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, NL-9747 AG Groningen, The Netherlands

Quantum Approximate Optimization Algorithm

E. Farhi *et. al*., arXiv:1411.4028, 2014 • Optimization problem with cost function $C(z) = \langle z|H_C|z\rangle$

Prepare

$$|\vec{\gamma}, \vec{\beta}\rangle = U_B(\beta_p)U_C(\gamma_p)\cdots U_B(\beta_1)U_C(\gamma_1)|+\rangle^{\otimes N}$$

where $\vec{\gamma} = (\gamma_1, \dots, \gamma_p), \ \vec{\beta} = (\beta_1, \dots, \beta_p)$ are variational parameters and $U_C(\gamma) = e^{-i\gamma H_C}, \quad U_B(\beta) = e^{-i\beta \sum_{i=1}^N \sigma_i^x}.$

▶ Compute $E_p(\vec{\gamma}, \vec{\beta}) = \langle \vec{\gamma}, \vec{\beta} | H_C | \vec{\gamma}, \vec{\beta} \rangle$ and minimize w.r.t. $\vec{\gamma}$ and $\vec{\beta}$.

where $z = z_1 z_2 \dots z_N$, $z_i \in \{-1, 1\}$ and H_C diagonal w.r.t. $\{|z_i\rangle\}$

Practical Aspects

- $E_p(\vec{\gamma}, \vec{\beta}) = \sum |\langle z|\vec{\gamma}, \vec{\beta}\rangle|^2 C(z)$ can be computed on a simulator; needs to be sampled on a real chip
- ▶ Ratio $r = \frac{E_p(\vec{\gamma}, \vec{\beta}) E_{\text{max}}}{E_{\text{min}} E_{\text{max}}}$ is related to approximation ratio
- ▶ Optimization algorithm used: Nelder-Mead

Quantum Annealing

T. Kadowaki & H. Nishimori, Phys. Rev. E 58, 5355, 1998

- ▶ Preparation of known ground state of initial Hamiltonian H_{initial}
- ightharpoonup Adiabatic transformation to the problem Hamiltonian H_{final}

$$H(s) = A(s)H_{\text{initial}} + B(s)H_{\text{final}}.$$

Functions A(s) and B(s), with $s = t/T_a$ and T_a annealing time, determine the annealing scheme and satisfy

$$A(0) > 0$$
, $A(1) \approx 0$, $B(0) \approx 0$, $B(1) > 0$.

- ▶ During the annealing process, the system stays in its ground state (if $T_a \to \infty$; adiabatic theorem)
- ► Final state gives solution (ground state) of problem Hamiltonian
- ► Hamiltonian of quantum annealer built by D-Wave Systems Inc.:

$$H(s) = -A(s) \sum_{k} \sigma_k^x - B(s) \left(\sum_{k} h_k \sigma_k^z + \sum_{l < k} J_{lk} \sigma_k^z \sigma_j^z \right),$$

where h_k , $J_{lk} \in [-1, 1]$ have to be chosen according to the problem

Results and Conclusions

M. Willsch et. al. arXiv:1907.02359, 2019

expectation

Comparing the values,

performs rather poorly

the

QAOA on the real chip

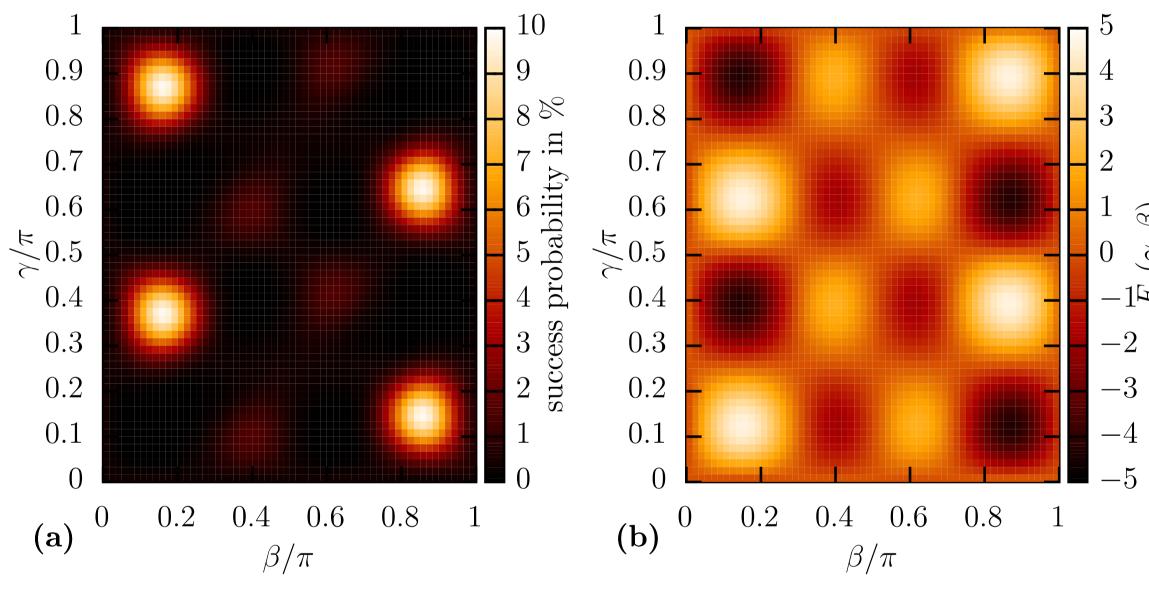
value, the minimum is

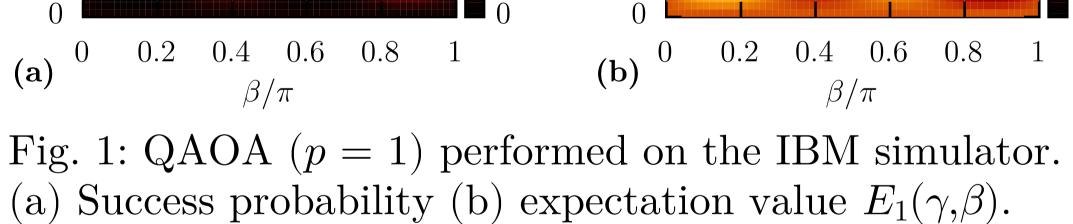
at the correct position

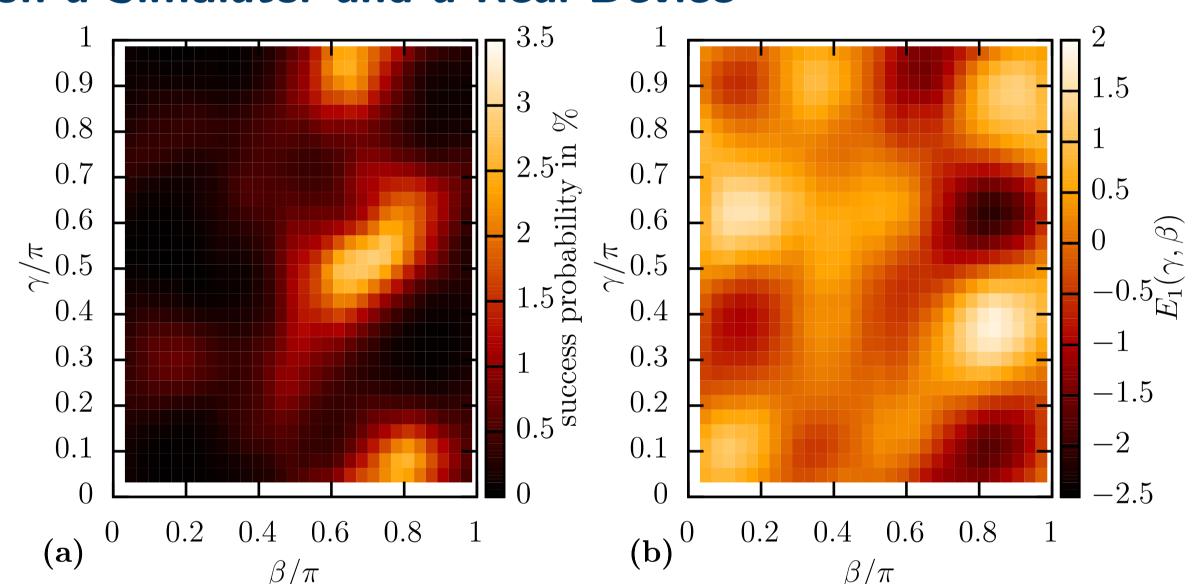
► Regarding the success

Test set: 2-SAT problems with unique ground state and highly degenerate first excited state

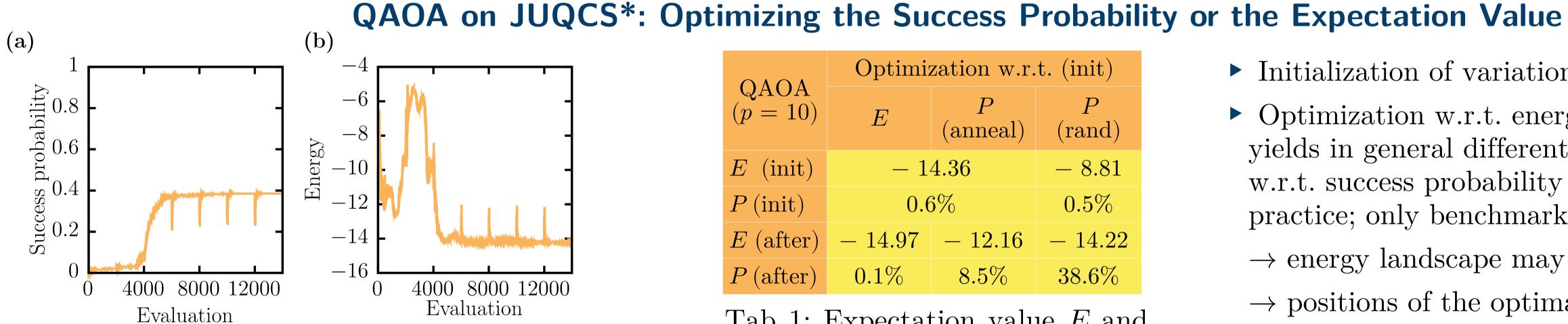
QAOA on a Simulator and a Real Device







probability, the pattern is deformed Fig. 2: QAOA (p = 1) performed on the IBM Q Experience (IBM Q 16 Melbourne). (a) Success probability (b) expectation value $E_1(\gamma,\beta)$.



Success probability and (b) (a)energy expectation value during the optimization w.r.t. success probability for an 18-variable problem instance.

$QAOA \\ (p = 10)$	Optimization w.r.t. (init)		
	E	P (anneal)	$P \pmod{1}$
E (init)	-14.36		- 8.81
$P\left(\mathrm{init}\right)$	0.6%		0.5%
E (after)	-14.97	-12.16	-14.22
P (after)	0.1%	8.5%	38.6%

Tab 1: Expectation value E and success probability P before and after the optimization of $(\vec{\gamma}, \vec{\beta})$

- ▶ Initialization of variational parameters can be crucial
- \triangleright Optimization w.r.t. energy expectation value Eyields in general different results than optimization w.r.t. success probability P (not applicable in practice; only benchmarking)
- \rightarrow energy landscape may have more local optima
- → positions of the optima (energy/probability) may not be aligned

*Jülich Universal Quantum Computer Simulator

Comparison between QAOA and Quantum Annealing

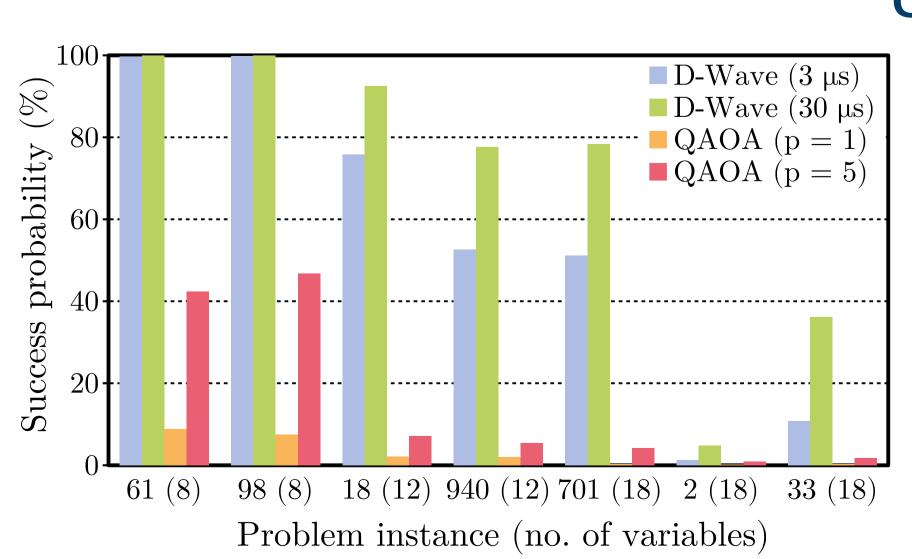


Fig. 3: Success probabilities for QAOA (JUQCS) and quantum annealing (DW_2000Q_2_1 chip).

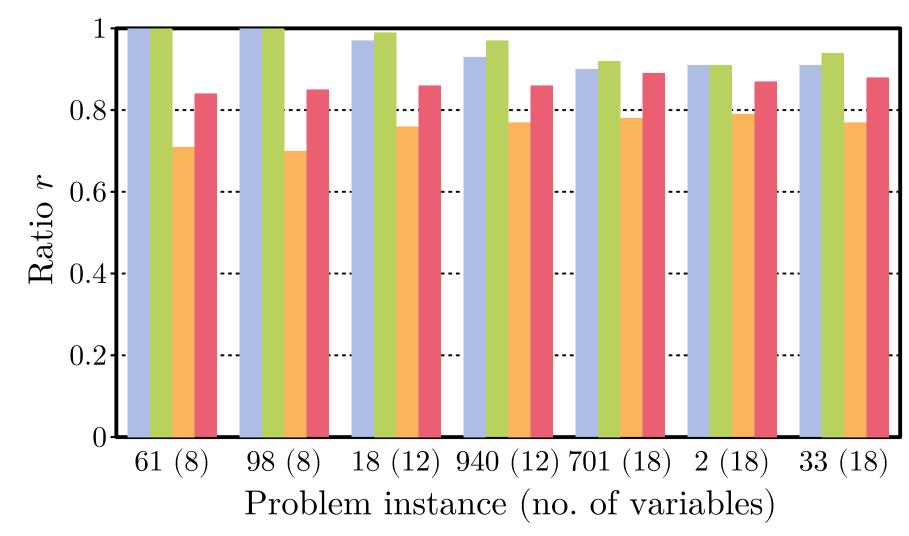


Fig. 4: Ratio r for QAOA (JUQCS) and quantum annealing (DW_2000Q_2_1 chip).

- ▶ D-Wave quantum annealer (real chip) outperforms QAOA on a simulator (ideal case)
- For the hardest cases, both do not seem to work well
- \rightarrow similar trends for success probability
- → success depends on problem instance
- ightharpoonupRatio r
 - \rightarrow for QAOA more stable than for QA
 - \rightarrow for QAOA, tends to increase with the number of variables
 - \rightarrow increase from p=1 to p=5 is larger