
▶ Comparing the values, QAOA on the real chip performs rather poorly
▶ For the expectation value, the minimum is at the correct position
▶ Regarding the success probability, the pattern is deformed

▶ D-Wave quantum annealer (real chip) outperforms QAOA on a simulator (ideal case)
▶ For the hardest cases, both do not seem to work well→ similar trends for success probability→ success depends on problem instance
▶ Ratio 𝑟→ for QAOA more stable than for QA→ for QAOA, tends to increase with the number of variables→ increase from 𝑝 = 1 to 𝑝 = 5 is larger

▶ Optimization problem with cost function  where                                       and 𝐻𝐶 diagonal w.r.t. {|𝑧𝑖⟩}
▶ Prepare  where                                              are variational parameters and 
▶ Compute                                   and minimize w.r.t.

Results and Conclusions M. Willsch et. al.,
arXiv:1907.02359, 2019

Quantum Annealing

where                       have to be chosen according to the problem

▶ During the annealing process, the system stays in its ground state(if            ; adiabatic theorem)
▶ Final state gives solution (ground state) of problem Hamiltonian
▶ Hamiltonian of quantum annealer built by D-Wave Systems Inc.:

▶ Preparation of known ground state of initial Hamiltonian
▶ Adiabatic transformation to the problem Hamiltonian
▶ Functions 𝐴(𝑠) and 𝐵(𝑠), with 𝑠 = 𝑡/𝑇a and 𝑇a annealing time, determine the annealing scheme and satisfy

Fig. 1: QAOA (𝑝 = 1) performed on the IBM simulator.(a) Success probability (b) expectation value 𝐸1(𝛾,𝛽).

Practical Aspects

QAOA on a Simulator and a Real Device

E. Farhi et. al.,
arXiv:1411.4028, 2014

▶  Initialization of variational parameters can be crucial
▶  Optimization w.r.t. energy expectation value 𝐸 yields in general different results than optimization w.r.t. success probability 𝑃 (not applicable in practice; only benchmarking)→ energy landscape may have more local optima → positions of the optima (energy/probability) may not be aligned

 Test set: 2-SAT problems with unique ground state and highly degenerate first excited state
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Comparison between QAOA and Quantum Annealing

Benchmarking the Quantum Approximate 
Optimization Algorithm

Quantum Approximate Optimization Algorithm

Success 
probabi

lity (%)

61 (8) 98 (8) 18 (12) 940 (12) 701 (18) 2 (18) 33 (18)020
4060
80100 D-Wave (3 μs)D-Wave (30 μs)QAOA (p = 1)QAOA (p = 5)

Problem instance (no. of variables) 61 (8) 98 (8) 18 (12) 940 (12) 701 (18) 2 (18) 33 (18)00.20.40.60.81

Ratio 𝑟

Problem instance (no. of variables)

▶                                         can be computed on a simulator; needs to be sampled on a real chip
▶ Ratio                              is related to approximation ratio
▶ Optimization algorithm used: Nelder-Mead

Fig. 2: QAOA (𝑝 = 1) performed on the IBM Q Experience (IBM Q 16 Melbourne). (a) Success probability (b) expectation value 𝐸1(𝛾,𝛽).
QAOA on JUQCS*: Optimizing the Success Probability or the Expectation Value

Fig. 3: Success probabilities for QAOA (JUQCS) and quantum annealing (DW_2000Q_2_1 chip). Fig. 4: Ratio 𝑟 for QAOA (JUQCS) and quantum annealing (DW_2000Q_2_1 chip).

Fig. 3: (a) Success probability and (b) energy expectation value during the optimization w.r.t. success probability for an 18-variable problem instance.

QAOA(𝑝 = 10) Optimization w.r.t. (init)𝐸 𝑃 (anneal) 𝑃(rand)𝐸� (init) − 14.36 − 8.81𝑃 (init) 0.6% 0.5%𝐸 (after) − 14.97 − 12.16 − 14.22𝑃 (after) 0.1% 8.5% 38.6%
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Tab 1: Expectation value 𝐸 and success probability 𝑃 before and after the optimization of *Jülich Universal 
Quantum Computer 

Simulator
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