000868316 001__ 868316
000868316 005__ 20210130004207.0
000868316 0247_ $$2doi$$a10.1021/acs.jpcb.8b10725
000868316 0247_ $$2ISSN$$a1089-5647
000868316 0247_ $$2ISSN$$a1520-5207
000868316 0247_ $$2ISSN$$a1520-6106
000868316 0247_ $$2altmetric$$aaltmetric:55814874
000868316 0247_ $$2pmid$$apmid:30702291
000868316 0247_ $$2WOS$$aWOS:000460996400004
000868316 037__ $$aFZJ-2019-06866
000868316 082__ $$a530
000868316 1001_ $$00000-0002-7293-7287$$aMatsarskaia, Olga$$b0$$eCorresponding author
000868316 245__ $$aPhase-Separation Kinetics in Protein–Salt Mixtures with Compositionally Tuned Interactions
000868316 260__ $$aWashington, DC$$bSoc.$$c2019
000868316 3367_ $$2DRIVER$$aarticle
000868316 3367_ $$2DataCite$$aOutput Types/Journal article
000868316 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1586171256_14019
000868316 3367_ $$2BibTeX$$aARTICLE
000868316 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000868316 3367_ $$00$$2EndNote$$aJournal Article
000868316 520__ $$aLiquid–liquid phase separation (LLPS) in protein systems is relevant for many phenomena, from protein condensation diseases to subcellular organization to possible pathways toward protein crystallization. Understanding and controlling LLPS in proteins is therefore highly relevant for various areas of (biological) soft matter research. Solutions of the protein bovine serum albumin (BSA) have been shown to have a lower critical solution temperature–LLPS (LCST–LLPS) induceable by multivalent salts. Importantly, the nature of the multivalent cation used influences the LCST–LLPS in such systems. Here, we present a systematic ultrasmall-angle X-ray scattering investigation of the kinetics of LCST–LLPS of BSA in the presence of different mixtures of HoCl3 and LaCl3, resulting in different effective interprotein attraction strengths. We monitor the characteristic length scales ξ(t, Tfin) after inducing LLPS by subjecting the respective systems to temperature jumps in their liquid–liquid coexistence regions. With increasing interprotein attraction and increasing Tfin, we observe an increasing deviation from the growth law of ξ ∼ t1/3 and an increased trend toward arrest. We thus establish a multidimensional method to tune phase transitions in our systems. Our findings help shed light on general questions regarding LLPS and the tunability of its kinetics in both proteins and colloidal systems.
000868316 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x0
000868316 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x1
000868316 588__ $$aDataset connected to CrossRef
000868316 65027 $$0V:(DE-MLZ)SciArea-160$$2V:(DE-HGF)$$aBiology$$x0
000868316 65017 $$0V:(DE-MLZ)GC-1602-2016$$2V:(DE-HGF)$$aPolymers, Soft Nano Particles and  Proteins$$x0
000868316 693__ $$0EXP:(DE-MLZ)KWS3-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS3-20140101$$6EXP:(DE-MLZ)NL3auS-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-3: Very small angle scattering diffractometer with focusing mirror$$fNL3auS$$x0
000868316 7001_ $$0P:(DE-HGF)0$$aDa Vela, Stefano$$b1
000868316 7001_ $$0P:(DE-HGF)0$$aMariani, Alessandro$$b2
000868316 7001_ $$0P:(DE-Juel1)130647$$aFu, Zhendong$$b3
000868316 7001_ $$00000-0001-7639-8594$$aZhang, Fajun$$b4
000868316 7001_ $$00000-0003-3659-6718$$aSchreiber, Frank$$b5$$eCorresponding author
000868316 773__ $$0PERI:(DE-600)2006039-7$$a10.1021/acs.jpcb.8b10725$$gVol. 123, no. 9, p. 1913 - 1919$$n9$$p1913 - 1919$$tThe journal of physical chemistry <Washington, DC> / B B, Condensed matter, materials, surfaces, interfaces & biophysical$$v123$$x1520-5207$$y2019
000868316 8564_ $$uhttps://juser.fz-juelich.de/record/868316/files/acs.jpcb.8b10725.pdf$$yRestricted
000868316 8564_ $$uhttps://juser.fz-juelich.de/record/868316/files/acs.jpcb.8b10725.pdf?subformat=pdfa$$xpdfa$$yRestricted
000868316 909CO $$ooai:juser.fz-juelich.de:868316$$pVDB$$pVDB:MLZ
000868316 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130647$$aForschungszentrum Jülich$$b3$$kFZJ
000868316 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x0
000868316 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x1
000868316 9141_ $$y2020
000868316 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000868316 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000868316 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000868316 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000868316 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000868316 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000868316 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000868316 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000868316 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000868316 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000868316 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS CHEM B : 2017
000868316 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000868316 920__ $$lyes
000868316 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kJCNS-1$$lNeutronenstreuung$$x0
000868316 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x1
000868316 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x2
000868316 980__ $$ajournal
000868316 980__ $$aVDB
000868316 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000868316 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000868316 980__ $$aI:(DE-588b)4597118-3
000868316 980__ $$aUNRESTRICTED