TY - JOUR
AU - Arute, Frank
AU - Arya, Kunal
AU - Babbush, Ryan
AU - Bacon, Dave
AU - Bardin, Joseph C.
AU - Barends, Rami
AU - Biswas, Rupak
AU - Boixo, Sergio
AU - Brandao, Fernando G. S. L.
AU - Buell, David A.
AU - Burkett, Brian
AU - Chen, Yu
AU - Chen, Zijun
AU - Chiaro, Ben
AU - Collins, Roberto
AU - Courtney, William
AU - Dunsworth, Andrew
AU - Farhi, Edward
AU - Foxen, Brooks
AU - Fowler, Austin
AU - Gidney, Craig
AU - Giustina, Marissa
AU - Graff, Rob
AU - Guerin, Keith
AU - Habegger, Steve
AU - Harrigan, Matthew P.
AU - Hartmann, Michael J.
AU - Ho, Alan
AU - Hoffmann, Markus
AU - Huang, Trent
AU - Humble, Travis S.
AU - Isakov, Sergei V.
AU - Jeffrey, Evan
AU - Jiang, Zhang
AU - Kafri, Dvir
AU - Kechedzhi, Kostyantyn
AU - Kelly, Julian
AU - Klimov, Paul V.
AU - Knysh, Sergey
AU - Korotkov, Alexander
AU - Kostritsa, Fedor
AU - Landhuis, David
AU - Lindmark, Mike
AU - Lucero, Erik
AU - Lyakh, Dmitry
AU - Mandrà, Salvatore
AU - McClean, Jarrod R.
AU - McEwen, Matthew
AU - Megrant, Anthony
AU - Mi, Xiao
AU - Michielsen, Kristel
AU - Mohseni, Masoud
AU - Mutus, Josh
AU - Naaman, Ofer
AU - Neeley, Matthew
AU - Neill, Charles
AU - Niu, Murphy Yuezhen
AU - Ostby, Eric
AU - Petukhov, Andre
AU - Platt, John C.
AU - Quintana, Chris
AU - Rieffel, Eleanor G.
AU - Roushan, Pedram
AU - Rubin, Nicholas C.
AU - Sank, Daniel
AU - Satzinger, Kevin J.
AU - Smelyanskiy, Vadim
AU - Sung, Kevin J.
AU - Trevithick, Matthew D.
AU - Vainsencher, Amit
AU - Villalonga, Benjamin
AU - White, Theodore
AU - Yao, Z. Jamie
AU - Yeh, Ping
AU - Zalcman, Adam
AU - Neven, Hartmut
AU - Martinis, John M.
TI - Quantum supremacy using a programmable superconducting processor
JO - Nature
VL - 574
IS - 7779
SN - 1476-4687
CY - London [u.a.]
PB - Nature Publ. Group78092
M1 - FZJ-2019-06904
SP - 505 - 510
PY - 2019
AB - The promise of quantum computers is that certain computational tasks might be executed exponentially faster on a quantum processor than on a classical processor1. A fundamental challenge is to build a high-fidelity processor capable of running quantum algorithms in an exponentially large computational space. Here we report the use of a processor with programmable superconducting qubits to create quantum states on 53 qubits, corresponding to a computational state-space of dimension 2^53 (about 10^16). Measurements from repeated experiments sample the resulting probability distribution, which we verify using classical simulations. Our Sycamore processor takes about 200 seconds to sample one instance of a quantum circuit a million times—our benchmarks currently indicate that the equivalent task for a state-of-the-art classical supercomputer would take approximately 10,000 years. This dramatic increase in speed compared to all known classical algorithms is an experimental realization of quantum supremacy for this specific computational task, heralding a much-anticipated computing paradigm.
LB - PUB:(DE-HGF)16
C6 - pmid:31645734
UR - <Go to ISI:>//WOS:000492991700045
DO - DOI:10.1038/s41586-019-1666-5
UR - https://juser.fz-juelich.de/record/868375
ER -