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DIVIDE AND CONQUER
Chebyshev polynomials
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SUBSPACE ITERATION
Power Iteration: Given a generic vector v = ∑

n
i=1 sixi

vm = Amv =
n

∑
i=1

si Amxi =
n

∑
i=1

si λ
m
i xi = s1x1 +

n

∑
i=2

si

(
λi

λ1

)m

xi ∼ s1x1

Subspace iteration + Chebyshev polynomials:

vm = pm(A)v =
n

∑
i=1

si pm(A)xi =
n

∑
i=1

si pm(λi)xi

≈
nev

∑
i=1

siCm(
λi− c

e
)xi +

n

∑
j=nev+1

sjxj

Reorthogonalization + Rayleigh−Ritz

≈
nev

∑
i=1

(
sixi +

n

∑
j=nev+1

Si
j

1
|ρj|m

xj

)
∼ ∑

nev
i=1 sixi
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THE CORE OF THE ALGORITHM: CHEBYSHEV FILTER
In practice

Three-terms recurrence relation
Cm+1 (t) = 2xCm (t)−Cm−1 (t) ; m ∈ N, C0 (t) = 1, C1 (t) = t

Zm
.
= pm(Ã) Z0 with Ã = A− cIN and c = bsup+µnev

2 e = bsup−µnev
2

FOR: i = 1→ deg−1

Zi+1← 2
σi+1

e
Ã × Zi −σi+1σi Zi−1 xHEMM

END FOR.
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CHASE PARAMETERS
A typical iterative methods depends on a number of tunable parameters. ChASE is no exception.

General input parameters
N – Size of eigenproblem
nev – Number of desired eigenpairs
nex – Size of search space augmentation
tol – Required threshold tolerance

Filter parameters
deg – Polynomial degree
µ1 – Estimate for lowest eigenvalue λ1

bsup – Bound for largest eigenvalue λn

µnev+nex – Estimate for eigenvalue bounding search space
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ESTIMATING THE SPECTRAL PARAMETERS
Estimate of µ1 and bsup are obtained by the simple repeatition of few Lanczos steps1

1. Compute k Lanczos steps

AU = UTk + fke>k Tk = ZH
Λ̃kZ Λ̃k = diag[λ̃1, . . . , λ̃k]

2. Compute upper bound
bsup = ‖fk‖2 +max[λ̃1, . . . , λ̃k]

3. Estimate lower eigenvalue
µ1 = min[λ̃1, . . . , λ̃k]

k ∼ 25 is usually sufficient

1Based on work by Zhou and Li (2011)
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ESTIMATING THE SPECTRAL PARAMETERS
Estimating µnev+nex and requires additional Laczos steps to build a spectral density2.

1. Compute nvec times k Lanczos steps

AU[j] = U[j]T [j]
k + f [j]k e>k T [j]

k = (Z[j])H
Λ̃
[j]
k Z[j]

Λ̃
[j]
k = diag[λ̃[j]

1 , . . . , λ̃
[j]
k ]

2. Compute the spectral density

φ̃(t) =
1

nvec

nvec

∑
j=1

k

∑
i=0
|Z[j]

1,i|
2gσ(t− λ̃

[j]
i )

3. Find t̄ = µnev+nex such that ∫ t̄

−∞

φ̃(t)dt ≈ nev+nex
N

.

Width of the Gaussian σ = 0.25∗ |bsup−µ1|
Number of random vectors nvec = 3÷5
2Based on work by Lin et al. (2016)
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POLYNOMIAL DEGREE OPTIMIZATION
Residuals vs convergence ratio

Definition
The convergence ratio for the eigenvector xa corresponding to eigenvalue λa /∈ [µnev+nex,bsup] is defined as

|ρa|−1 = min
±

∣∣∣∣∣∣λa− c
e
±

√(
λa− c

e

)2
−1

∣∣∣∣∣∣ .
The further away λa is from the interval [µnev+nex,bsup] the smaller is |ρa|−1 and the faster the convergence to
xa is.

Residuals are a function of m and |ρ|

Res(wm
a ,λa) = Const×

∣∣∣ 1
ρa

∣∣∣m 1≤ a≤ nev+nex.

“Const” is independent of m and ρ
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POLYNOMIAL DEGREE OPTIMIZATION
Tailoring polynomial degree for each eigenpair

1. Filter with an initial degree m(0) and compute residuals

Res(wm(0)
a

a , λ̃a)∼ Const×|ρa|−m(0)
a 1≤ a≤ nev+nex.

2. The residual of eigenpair after the next filtering step would be

Res(wm(1)
a

a , λ̃a)≈ Res(wm(0)
a

a )×|ρa|−m(1)
a 1≤ a≤ nev+nex.

3. Compute the optimal minimal degree such that Res(wm(0)
a

a , λ̃a)≤ tol

m(1)
a ≥ ln

∣∣∣∣∣Res(wm(0)
a

a , λ̃a)

tol

∣∣∣∣∣(ln |ρa|)−1 1≤ a≤ nev+nex.
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CHASE PSEUDOCODE (OPTIMIZED)

INPUT: Hermitian A, tol, deg — OPTIONAL: approx. vectors W, approx. values {µ1 . . .µnev}.
OUTPUT: nev wanted eigenpairs (Λ,Y).

1 Lanczos DoS step. Computes spectral estimates µ1, µnev+nex, and bsup > λN .
2 Set the initial vector of degrees ma =deg

REPEAT UNTIL CONVERGENCE:
3 Chebyshev filter. Filter a block of vectors W with a vector of degrees ma.

4 Re-orthogonalize W = QR & compute the Rayleigh quotient G = Q†AQ.

5 Solve the reduced problem GZ = ZΛ̃ and compute the approximate Ritz pairs
(
Λ̃,W← QZ

)
.

6 Compute and store Ritz vectors residuals Res(wa, λ̃a) and check for convergence.

7 Deflate and lock the converged vectors in (Λ,Y).

8 Optimizer. Compute vector of polynomial degrees ma ≥ ln
∣∣∣Res(wa,λ̃a)

tol

∣∣∣/ ln |ρa|.

END REPEAT
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INDEPENDENCE FROM INITIAL DEGREE
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DEGREE OPTIMIZATION⇒ FLOPS REDUCTION
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CHASE PARAMETERS
In ChASE, filter parameters have been practically eliminated.

General input parameters
N – Size of eigenproblem
nev – Number of desired eigenpairs
nex – Size of search space augmentation
tol – Required threshold tolerance

Filter parameters
deg – Polynomial degree
µ1 – Estimate for lowest eigenvalue
bsup – Bound for largest eigenvalue
µnev+nex – Estimate for eigenvalue bounding search space
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CHASE LIBRARY RELEASED

ChASE is open source (BSD 2.0 license) and available at

https://github.com/SimLabQuantumMaterials/ChASE

https://arxiv.org/abs/1805.10121 (To appear on ACM Transaction
on Mathematical Software)

Highlights

Modern C++ interface: easy-to-integrate in application codes.
Multiple parallel implementations: performance portability.
Excellent strong- and weak-scale performance.
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EXPERIMENTAL SETUP

Table: Matrices used in scaling experiments

JURECA BLUEWATERS

n nev nex # Nodes # Cores n2

# Cores # Cores n2

# Cores

NaCl
3893 256 51 4 96 N/A N/A N/A
9273 256 51 25 600 N/A N/A N/A

AuAg 13,379 972 194 25 600 N/A N/A N/A

BSE

22,360 100 20 9 216 2,314,674 64 7,812,025
32,976 100 20 16 384 2,831,814 128 8,495,442
47,349 100 20 36 864 2,594,823 288 7,784,471
62,681 100 20 64 1536 2,557,882 512 7,673,648
76,674 100 20 100 2400 2,449,542 800 7,348,628
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STRONG SCALING
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WEAK SCALING ON JURECA

Table: Weak scaling experimental results on JURECA

Iterations Matvecs Runtime

ChASE- ChASE- ChASE- ChASE- ChASE- ChASE-
# Cores BLAS Elemental BLAS Elemental BLAS Elemental Direct

216 11 11 19,990 20,192 25.1 s 26.0 s 81.5 s
384 10 9 16,778 16,100 23.7 s 24.0 s 141.2 s
864 17 11 23,424 27,506 39.8 s 45.2 s 211.1 s

1536 13 12 23,268 21,940 36.4 s 41.4 s 367.8 s
2400 10 13 22,614 21,720 38.4 s 40.8 s 380.1 s

Tests were performed on the JURECA cluster.
2 Intel Xeon E5-2680 v3 Haswell – Up to 0.96÷1.92 TFLOPS DP/SP;
2 x NVIDIA K80 (four devices) – Up to 2.91÷8.74 TFLOPS DP/SP.
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WEAK SCALING WITH GPUS (BLUE WATERS)

Table: Weak scaling experiment results for ChASE-MPI on BLUEWATERS

# Cores Iterations Matvecs Filter Runtime Total Runtime

CPU GPU Speedup CPU GPU Speedup

64 11 20,106 176.4 s 22.8 s 7.7 228.0 s 43.5 s 5.2
128 9 16,856 175.9 s 27.5 s 6.4 236.1 s 52.6 s 4.5
288 12 23,610 231.5 s 30.2 s 7.7 306.8 s 70.3 s 4.4
512 14 23,080 225.5 s 30.1 s 7.5 316.5 s 87.3 s 3.6
800 12 22,868 209.1 s 30.8 s 6.8 299.2 s 89.9 s 3.3

Tests were performed on the BLUE WATERS cluster.
AMD 6276 Interlagos – Up to 156 GFLOPS DP;
NVIDIA K20 – Up to 1310 GFLOPS DP.
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CONCLUSIONS AND OUTLOOK
Conclusions
√

Modern library based on C++ STL with clear separation b/w algorithm and implementation;
√

ChASE is templates for SP, DP, Real and Complex;
√

ChASE has a pure MPI and a distributed MPI+X implemetation for inner kernels;
√

Eliminated dependence on Chebyshev filter’s parameters;
√

Minimized filter’s FLOPs count.

Outlook
→ Refine ChASE node-level parallelism→ multiple GPUs;
→ Add support for sparse matrices;
→ Modify filter to extend to generalized eigenproblems;
→ Eliminate dependence on nex.
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THANK YOU

https://github.com/SimLabQuantumMaterials/ChASE

https://arxiv.org/abs/1805.10121 (To appear on ACM Transaction
on Mathematical Software)

QUANTUMATERIALS

1

e.di.napoli@fz-juelich.de

http://www.fz-juelich.de/ias/jsc/slqm
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