

OPTIMIZING RATIONAL FILTERS FOR INTERIOR EIGENVALUE SOLVERS

October 22, 2019 | E. Di Napoli, Konrad Köllnig, Jan Winkelmann |

OUTLINE

From spectrum slicing to load balancing

A roadmap to filter optimization

From subspace to best worst-case convergence rate

TOPIC

From spectrum slicing to load balancing

A roadmap to filter optimization

From subspace to best worst-case convergence rate

FRAMEWORK

The problem

$$Au = \lambda Bu, \quad \lambda \in [a, b], \quad A, B \in \mathbb{C}^{n \times n}$$
 (1)

The domain

The projector

$$r(A,B) := \sum_{i}^{n} \beta_{i} (A - Bz_{i})^{-1} B \approx \frac{1}{2\pi i} \oint_{\Gamma} (A - zB)^{-1} B \ dz \quad \equiv \sum_{\lambda_{j} \in [a \ b]} u_{j} u_{j}^{T} B$$

METHOD

REPEAT UNTIL CONVERGENCE:

- **2** Filter a block of vectors $V \leftarrow r(A, B)V = \sum_{i=1}^{n} \beta_i (A Bz_i)^{-1}BV$
- **3** Re-orthogonalize the vectors outputted by the filter; V = QR.
- 4 Compute the Rayleigh quotient $G = Q^{\dagger} \tilde{A} Q$.
- **5** Compute the primitive Ritz pairs (Λ, Y) by solving for $GY = Y\Lambda$.
- **6** Compute the approximate Ritz pairs $(\Lambda, V \leftarrow QY)$.

END REPEAT

Core elements

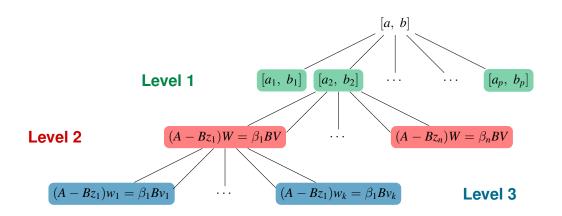
- f 1 Relies on good estimates of number $\mu_{[a\ b]}$ of eigenvalues in $[a\ b]$
- 2 Solve for multiple right-hand side linear systems $(A Bz_i)W = \beta_i BV$ per complex pole z_i
- **3** Accuracy depends on the accuracy of the projector r(A, B)

WHY THIS METHOD?

WHY THIS METHOD?

Access to massively parallel computing clusters

PARALLELISM



LOAD BALANCING

Level 1 is influenced by

- the evenness in the distribution of number $\mu_{[a_j \ b_j]}$ of eigenvalues in each sub-interval $[a_j \ b_j]$;
- the effectiveness of the projector r(A, B) in filtering the subspace corresponding to each single interval $[a_j \ b_j]$.

Level 2 is influenced by

- the time to solution for linear systems $(A Bz_i)W = \beta_i BV$ defined by the same matrices but distinct shifts (poles) z_i and RHS coefficients β_i ;
- the efficiency of the projector r(A, B) in regulating the number of subspace iterations until convergence;
- the number $\mu_{[a_j \ b_j]}$ of eigenvalues in $[a_j \ b_j]$ which is directly related to the size of the RHS of the linear systems.

3 Level 3 is influenced by

- the time to solution for linear systems $(A Bz_i)w_k = \beta_i Bv_k$ defined by the same matrices but distinct RHS v_k ;
- the efficiency of the projector r(A, B) in regulating the number of subspace iteration until convergence.

THREE ISSUES

Eigenvalue distribution across sub-intervals

 $\sqrt{\text{Kernel Polynomial Method or Lanczos DoS}^a + \text{Stochastic}}$ estimate^b are a good approach to address issue.

^aL. Lin et al. DOI:10.1137/130934283

^bE. Di Napoli et al. DOI:abs/10.1002/nla.2048

Predicting time to solution for linear solver

Ongoing work using supervised classification and linear solver + pre-conditioner matching^a

^aIn collaboration with V. Ejikhout at TACC

Efficiency and robustness of rational filter

⇒ Optimize filter using Non-linear Least Squares for best worst-case convergence^a.

^aJ. Winkelmann et al. DOI:10.3389/fams.2019.00005 & K. Köllnig et al. TBS to SISC

TOPIC

From spectrum slicing to load balancing

A roadmap to filter optimization

From subspace to best worst-case convergence rate

SETTING UP THE PROBLEM

Ideal filter

$$\mathbb{1}_{(a,b)}(x) = \begin{cases} 1, & \text{if } x \in [a,b], \\ 0, & \text{otherwise} \end{cases}$$
 (2)

(Symmetric) Rational filter

$$r_{\beta,z}(x) := \sum_{i=1}^{m} \frac{\beta_i}{x - z_i} + \frac{\overline{\beta_i}}{x - \overline{z_i}} - \frac{\beta_i}{x + z_i} - \frac{\overline{\beta_i}}{x + \overline{z_i}}, \quad x \in \mathbb{R}, \quad \text{with } \beta \in \mathbb{C}^m, z \in (\mathbb{H}^{+R})^m$$
 (3)

Objective function

$$f_{\omega}(\beta, z) := \int_{-\infty}^{\infty} \omega(x) \left(\mathbb{1}_{(a,b)}(x) - r_{\beta,z}(x) \right)^2 dx, \tag{4}$$

Minimization problem

$$\underset{\beta \in \mathbb{C}^m, z \in (\mathbb{H}^{+R})^m}{\operatorname{argmin}} f_{\omega}(\beta, z). \tag{5}$$

MINIMIZATION APPROACHES

First approach: Gradient descent

$$x^{(k+1)} = x^{(k)} + s \cdot \Delta x^{(k)} = x^{(k)} - s \cdot \nabla_x f_\omega(x) \Big|_{x = x^{(k)}}, \quad s \ge 0 \quad x \equiv (\beta z).$$
 (6)

Slow (linear) convergence

Dependence of starting positions $\boldsymbol{x}^{(0)}$ and weight function ω

2 Second approach: Levenberg-Mardquardt $\xi(\beta,z)=\mathbb{1}_{(a,b)}-r_{\beta,z} \Rightarrow f_{\omega}(x)\equiv ||\xi(x)||_2^2$

1. Set:
$$H := \langle \nabla \xi(x^{(k)}), \nabla \xi(x^{(k)}) \rangle$$

2. Solve:
$$H \cdot \Delta x_{GN}^{(k)} = \langle \xi(x^{(k)}), \nabla \xi(x^{(k)}) \rangle = -\frac{1}{2} \nabla f_{\omega}(x^{(k)})$$

3. Update:
$$x^{(k+1)} = x^{(k)} + s \cdot \Delta x_{GN}^{(k)}$$
.

Faster convergence

Starting position: existing filters (e.g. Gauss-Legendre)

3 Third approach: Broyden-Fletcher-Goldfarb-Shanno (BFGS)

SLISE FILTERS

... using the BFGS algorithm

■ Supports only real-valued objective functions $f_{\omega}: \mathbb{C}^m \times \mathbb{H}^{+R} \to \mathbb{R} \ \Rightarrow \ \tilde{f}_{\omega}: \mathbb{R}^{4m} \to \mathbb{R}$

$$\tilde{f}\left(\begin{pmatrix} \Re(\beta^{\top}) \\ \Re(z^{\top}) \\ \Im(\beta^{\top}) \\ \Im(z^{\top}) \end{pmatrix}\right) := f(\Re(\beta) + i\Im(\beta), \Re(z) + i\Im(z)).$$
(7)

ullet The inverse Hessian of $ilde f_\omega$ is recursively defined as

$$H_0 := I_{4m}, \quad H_{k+1} := \left(I_{4m} - \frac{s_k y_k^T}{y_k^T s_k}\right) H_k \left(I_{4m} - \frac{y_k s_k^T}{y_k^T s_k}\right) + \frac{s_k s_k^T}{y_k^T s_k},\tag{8}$$

with

$$s_k := x_{k+1} - x_k, \quad y_k := \nabla \tilde{f}(x_{k+1}) - \nabla \tilde{f}(x_k),$$
 (9)

Very fast convergence (Still) dependent on weight function ω

TOPIC

From spectrum slicing to load balancing

A roadmap to filter optimization

From subspace to best worst-case convergence rate

NOTATION AND ENVIRONMENT

Conventions

In the rest of the slides we maintain the following notations

- Standard interval $[a,b] \longrightarrow [-1,1],$
- Active subspace size $M_0 = C \times \mu_{[a,b]}$ and $C \ge 1$,
- Gap parameter $G \in (0,1)$ such that $G < 1 < G^{-1}$ ($-G^{-1} < -1 < -G$).

Single test

- CNT matrix, N = 12,450 with 86,808 nnz
- Interval [a, b] = [-65.0, 4.96]
- M = 100

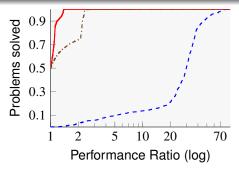
(Large) Benchmark set

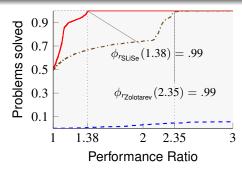
- 2116 intervals defining the corresponding interior eigenproblem,
- Each interval contains between 5 and 20 % of the total spectrum of Si₂ problem,
- Interval are selected based on "feature points": neighborhood of an identifiable spectral feature, such as a spectral gap or a cluster.

SLISE FILTER EFFICIENCY

Convergence rate for subspace iteration solver (e.g. FEAST)

$$\tau = \frac{|r(\lambda_{M_0+1})|}{|r(\lambda_{in})|}, \text{ with } |r(\lambda_{in})| = \min_{\lambda \in [-1,1]} |r(\lambda)|$$
 (10)





Performance profile: given a point x on the abscissa, the corresponding value $\phi_r(x)$ of the graph indicates that for $100 \cdot \phi_r(x)$ percent of the benchmark problems the filter r is at most a factor of x worse than the fastest of all filters.

JÜLICHForschungszentrum

BEYOND SLISE: THE WISE FILTERS

Best Worst-Case Convergence Rate (WCR)

Given a rational filter r and some fixed gap parameter $G \in (0,1)$, a filtered subspace iteration converges linearly, with probability one, at a convergence rate no larger than

$$w_G(r) = \frac{\max_{x \in [-\infty, -G^{-1}] \cup [G^{-1}, \infty]} |r(x)|}{\min_{x \in [-G, G]} |r(x)|},$$

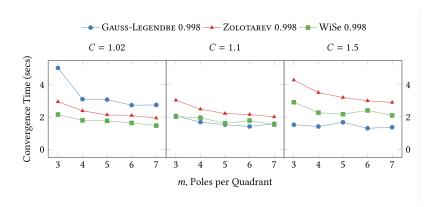
as long as no eigenvalues lie within $[-G^{-1}, -G] \cup [G, G^{-1}]$.

New minimization problem

$$\begin{cases}
\beta', z' &\leftarrow \underset{\beta, z}{\operatorname{argmin}} f_{\omega'}(\beta, z) \\
\omega' &\leftarrow \underset{\omega}{\operatorname{argmin}} w_G(r_{\beta, z}[\omega]).
\end{cases}$$
(11)

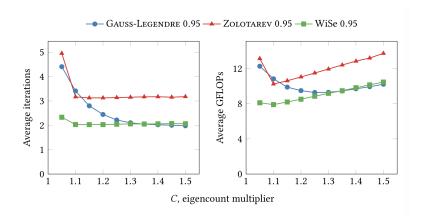
- Minimize WCR instead of Subspace Iteration convergence rate.
- Nested minimization: requires thousands of SLiSe "minimizations".
- Derivative-free minimization: Nelder-Mead algorithm.
- Eliminate parameter dependence on weight functions.

SINGLE TEST WITH FEAST



- Best worst-case convergence of FEAST strongly correlates with WCR of filter,
- Size of the active subspace M_0 is a confounding factor: big values of C mask the correlation between WCR and τ ,
- lacktriangle WiSe filters performance hardly depends on number of poles m.

BENCHMARK SET WITH FEAST



- Number of poles fixed to m=4,
- Confirms that FEAST with WiSe filter only influenced by WCR,
- For larger active subspaces Gauss-Legendre is competitive with WiSe but costs more FLOPs.

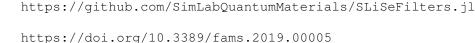
SUMMARY AND OUTLOOK

- WiSe filters depend almost exclusively on gap parameter G,
- WiSe filters offer a competitive edge when compared to the same solver using Gauss-Legendre and Zolotarev filters,
- WiSe filters are quite stable with respect to the convergence rate of the solver independently
 of the active subspace or the degree of the filter function,
- WiSe filters almost always minimize the total FLOP count required by FEAST to reach convergence.

Future work

- H Chase
- Integrating rational filters in the ChASE library
- Prediction of time to solution for linear systems solves,
- Filters for general complex eigenproblems.

THANK YOU



e.di.napoli@fz-juelich.de

http://www.fz-juelich.de/ias/jsc/slqm

