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FRAMEWORK
The problem

Au = λBu, λ ∈ [a, b], A,B ∈ Cn×n (1)

The domain

0 20 40 60 80 100

λmaxλmin few eigenvalues clustera b

The projector

r(A,B) :=

n∑
i

βi(A− Bzi)
−1B ≈ 1

2πi

∮
Γ

(A− zB)−1B dz ≡
∑

λj ∈ [a b]

ujuT
j B
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METHOD

REPEAT UNTIL CONVERGENCE:

2 Filter a block of vectors V ←− r(A,B)V =
∑n

i=1 βi(A− Bzi)
−1BV

3 Re-orthogonalize the vectors outputted by the filter; V = QR.

4 Compute the Rayleigh quotient G = Q†ÃQ.

5 Compute the primitive Ritz pairs (Λ,Y) by solving for GY = YΛ.

6 Compute the approximate Ritz pairs (Λ,V ← QY).

END REPEAT

Core elements
1 Relies on good estimates of number µ[a b] of eigenvalues in [a b]

2 Solve for multiple right-hand side linear systems (A− Bzi)W = βiBV per complex pole zi

3 Accuracy depends on the accuracy of the projector r(A,B)
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WHY THIS METHOD?

0 20 40 60 80 100

λmaxλmin few eigenvalues clustera b

Access to massively parallel computing clusters
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PARALLELISM

[a, b]

[a1, b1] [a2, b2]

(A− Bz1)W = β1BV

(A− Bz1)w1 = β1Bv1 · · · (A− Bz1)wk = β1Bvk

· · · (A− Bzn)W = βnBV

· · · · · · [ap, bp]Level 1

Level 2

Level 3
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LOAD BALANCING

1 Level 1 is influenced by
the evenness in the distribution of number µ[aj bj] of eigenvalues in each sub-interval [aj bj];
the effectiveness of the projector r(A,B) in filtering the subspace corresponding to each single
interval [aj bj].

2 Level 2 is influenced by
the time to solution for linear systems (A − Bzi)W = βiBV defined by the same matrices but distinct
shifts (poles) zi and RHS coefficients βi;
the efficiency of the projector r(A,B) in regulating the number of subspace iterations until
convergence;
the number µ[aj bj] of eigenvalues in [aj bj] which is directly related to the size of the RHS of the
linear systems.

3 Level 3 is influenced by
the time to solution for linear systems (A − Bzi)wk = βiBvk defined by the same matrices but distinct
RHS vk;
the efficiency of the projector r(A,B) in regulating the number of subspace iteration until
convergence.
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THREE ISSUES
Eigenvalue distribution across sub-intervals

√
Kernel Polynomial Method or Lanczos DoSa + Stochastic

estimateb are a good approach to address issue.
aL. Lin et al. DOI:10.1137/130934283
bE. Di Napoli et al. DOI:abs/10.1002/nla.2048

Predicting time to solution for linear solver

Ongoing work using supervised classification and linear
solver + pre-conditioner matchinga

aIn collaboration with V. Ejikhout at TACC

Efficiency and robustness of rational filter
⇒ Optimize filter using Non-linear Least Squares for best

worst-case convergencea.
aJ. Winkelmann et al. DOI:10.3389/fams.2019.00005 & K. Köllnig et al. TBS to SISC
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SETTING UP THE PROBLEM

0 20 40 60 80 100

λmaxλmin few eigenvalues clustera b

Ideal filter

1(a,b)(x) =

{
1, if x ∈ [a, b],

0, otherwise
. (2)

(Symmetric) Rational filter

rβ,z(x) :=

m∑
i=1

βi

x− zi
+

βi

x− zi
− βi

x + zi
− βi

x + zi
, x ∈ R, with β ∈ Cm, z ∈ (H+R)m (3)

Objective function

fω(β, z) :=

∫ ∞
−∞

ω(x) (1(a,b)(x)− rβ,z(x))2 dx, (4)

Minimization problem
argmin

β∈Cm,z∈(H+R)m
fω(β, z). (5)

Member of the Helmholtz Association October 22, 2019 Slide 10



MINIMIZATION APPROACHES

1 First approach: Gradient descent

x(k+1) = x(k) + s ·∆x(k) = x(k) − s · ∇xfω(x)
∣∣
x=x(k) , s ≥ 0 x ≡ (β z). (6)

Slow (linear) convergence
Dependence of starting positions x(0) and weight function ω

2 Second approach: Levenberg-Mardquardt ξ(β, z) = 1(a,b) − rβ,z ⇒ fω(x) ≡ ||ξ(x)||22

1. Set: H := 〈∇ξ(x(k)),∇ξ(x(k))〉

2. Solve: H ·∆x(k)
GN = 〈ξ(x(k)),∇ξ(x(k))〉 = −1

2
∇fω(x(k))

3. Update: x(k+1) = x(k) + s ·∆x(k)
GN .

Faster convergence
Starting position: existing filters (e.g. Gauss-Legendre)

3 Third approach: Broyden-Fletcher-Goldfarb-Shanno (BFGS)
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SLISE FILTERS
. . . using the BFGS algorithm

Supports only real-valued objective functions fω : Cm × H+R → R ⇒ f̃ω : R4m → R

f̃ (


(
<(β>)
<(z>)

)
(
=(β>)
=(z>)

)
) := f (<(β) + i=(β),<(z) + i=(z)). (7)

The inverse Hessian of f̃ω is recursively defined as

H0 := I4m, Hk+1 := (I4m −
skyT

k

yT
k sk

) Hk (I4m −
yksT

k

yT
k sk

) +
sksT

k

yT
k sk

, (8)

with
sk := xk+1 − xk, yk := ∇f̃ (xk+1)−∇f̃ (xk), (9)

Very fast convergence
(Still) dependent on weight function ω
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NOTATION AND ENVIRONMENT
Conventions
In the rest of the slides we maintain the following notations

Standard interval [a, b] −→ [−1, 1],
Active subspace size M0 = C × µ[a,b] and C ≥ 1,
Gap parameter G ∈ (0, 1) such that G < 1 < G−1 (−G−1 < −1 < −G).

Single test
CNT matrix, N = 12,450 with 86,808 nnz
Interval [a, b] = [−65.0, 4.96]

M = 100
(Large) Benchmark set

2116 intervals defining the corresponding interior eigenproblem,
Each interval contains between 5 and 20 % of the total spectrum of Si2 problem,
Interval are selected based on “feature points”: neighborhood of an identifiable spectral
feature, such as a spectral gap or a cluster.
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SLISE FILTER EFFICIENCY
Convergence rate for subspace iteration solver (e.g. FEAST)

τ =
|r(λM0+1)|
|r(λin)|

, with |r(λin)| = min
λ∈[−1,1]

|r(λ)| (10)
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Performance profile: given a point x on the abscissa, the corresponding value φr(x) of the graph
indicates that for 100 · φr(x) percent of the benchmark problems the filter r is at most a factor of x
worse than the fastest of all filters.
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BEYOND SLISE: THE WISE FILTERS
Best Worst-Case Convergence Rate (WCR)

Given a rational filter r and some fixed gap parameter G ∈ (0, 1), a filtered subspace iteration
converges linearly, with probability one, at a convergence rate no larger than

wG(r) =
maxx∈[−∞,−G−1]∪[G−1,∞] |r(x)|

minx∈[−G,G] |r(x)|
,

as long as no eigenvalues lie within [−G−1,−G] ∪ [G,G−1].

New minimization problem 
β′, z′ ← argmin

β,z
fω′(β, z)

ω′ ← argmin
ω

wG(rβ,z[ω]).
(11)

Minimize WCR instead of Subspace Iteration convergence rate.
Nested minimization: requires thousands of SLiSe “minimizations”.
Derivative-free minimization: Nelder-Mead algorithm.
Eliminate parameter dependence on weight functions.
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SINGLE TEST WITH FEAST

Best worst-case convergence of FEAST strongly correlates with WCR of filter,
Size of the active subspace M0 is a confounding factor: big values of C mask the correlation
between WCR and τ ,
WiSe filters performance hardly depends on number of poles m.
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BENCHMARK SET WITH FEAST

Number of poles fixed to m = 4,
Confirms that FEAST with WiSe filter only influenced by WCR,
For larger active subspaces Gauss-Legendre is competitive with WiSe but costs more FLOPs.
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SUMMARY AND OUTLOOK

WiSe filters depend almost exclusively on gap parameter G,
WiSe filters offer a competitive edge when compared to the same solver using
Gauss-Legendre and Zolotarev filters,
WiSe filters are quite stable with respect to the convergence rate of the solver independently
of the active subspace or the degree of the filter function,
WiSe filters almost always minimize the total FLOP count required by FEAST to reach
convergence.

Future work

Integrating rational filters in the ChASE library
Prediction of time to solution for linear systems solves,
Filters for general complex eigenproblems.
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THANK YOU

https://github.com/SimLabQuantumMaterials/SLiSeFilters.jl

https://doi.org/10.3389/fams.2019.00005

QUANTUMATERIALS

1

e.di.napoli@fz-juelich.de

http://www.fz-juelich.de/ias/jsc/slqm
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