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ONCE UPON A TIME... (1957)
Eigensolvers based on subspace iteration “ ... where developed in the 1960s and 1970s when the
Lanczos algorithm was under the cloud.” Beresford N. Parlett (1998)

F. L. Bauer (1924-2015)

BAUER F. L.: Das Verfahren der Treppeniteration und verwandte
Verfahren zur Lösung algebraischer Eigenwertprobleme” (The
process of staircase iteration and related procedures for the
solution of the algebraic eigenvalue problem).
Zeitschrift für angewandte Mathematik und Physik ZAMP May
1957, Volume 8, Issue 3, pp 214–235

Bi-iteration to solve Au = λu

X ← AX Y ← A>Y X = (x1, . . . , xp) Y = (y1, . . . , yp)

X ⊥ Y using linear conbinations.
Under certain conditions

X → U and Y → V

Member of the Helmholtz Association October 28, 2019 Slide 3



THE RISE OF SUBSPACE ITERATION (1969)
H. RUTISHAUSER
Computational Aspects of F.L. Bauer’s Simultaneous Iteration Method. Numer. Math. 13 pp.4-13 (1969)
Simultaneous Iteration Method for Symmetric Matrices. Numer. Math. 16 pp. 205-223 (1970)

H. Rutishauser (1918-1970)

Key ingredients: polynomial filtering, QR factorization, search
space projection, and a Ritz iteration. In addition, Rutishauser
suggests:

1 initial Ritz iteration⇒ estimate of the bounds of the filtered out
interval;

2 initial iteration with a low polynomial degree⇒ to avoid large error
in computing the extremal eigenvalues;

3 to combine a limited number of filtering iterations before
performing the orthonormalization;

4 to carefully select the initial set of vectors;

5 to limit the maximum value of the polynomial degree used in the
filter to mitigate the effect of floating point errors;

6 a locking mechanism that stores converged eigenpairs.
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THE GOLDEN AGE (1970-1972)
Contemporary to RUTISHAUSER

CLINT AND JENNINGS simultaneous work of on eigenvectors and eigenvalues of real
symmetric matrices by “simultaneous iteration”.1

STEWART upgraded Ritz iteration, which projects the eigenproblem onto the search space
using a Jacobi step, to a Rayleigh-Ritz step so as to avoid to deal with non-positive definite
matrices2.
STEWART extension of “simultaneous iteration” to non-Hermitian eigenproblems.3

Quotient iteration
Stewart rigorously demonstrated the enhanced convergence of
the eigenpairs when orthogonal iteration (subspace + orthonor-
malization) is used in conjunction with Rayleigh-Ritz.

1The Computer Journal, 13, p. 76 (1970) [submitted in 1968]
2Numer.Math. 13 pp.362-376 (1969)
3Numer. Math. 25, pp.125-136, (1976)
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QUOTIENT ITERATION
Schematic algorithm

INPUT: Matrix A,
OUTPUT: NEV extremal eigenpairs (Λ,W).

1 Set the size of the active space ` > NEV

2 V ←− rand(n, `)

REPEAT UNTIL CONVERGENCE:
3 Compute V ←− AV

4 Orthogonalize the vectors V = QR.

5 Compute the Rayleigh quotient G = QHAQ.

6 Compute the primitive Ritz pairs (Λ,Y) by solving for GY = YΛ.

7 Compute the Ritz pairs (Λ,V ← QY).

8 Check which one among the Ritz pairs converged.

9 Deflate and lock the converged vectors.
END REPEAT
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QUOTIENT ITERATION
Convergence properties

Backward perturbation analysis shows:

1 Ritz vector wa converges linearly

sin∠
(

xa,Q(i)w(i)
a

)
= O(θ(i)

a ) with θ(i)
a = ∠(xa,R(V(i)))

2 Ritz value λ̃a converges quadratically∣∣∣λ̃(i)
a − λa

∣∣∣ = O(
[
θ(i)

a

]2
)

as long as the uniform separation condition is satisfied.

3 Raleigh-Ritz minimizes the residual. If residual is small, eigenpair is an exact eigenpair of the
perturbed matrix (A + E).

Therefore, the standard stopping criterion for a subspace iteration is based on the computation of
eigenpair residuals and not on the error.

Historically Rutishauser uses a termination criterion based on the stagnation of the angles θ
(i)
a and does not compute the

residual before the angle is accepted.
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COMPUTATIONAL FEATURES OF QUOTIENT ITERATION

Computer Memory
Expensive
Limited in size

Performance
Reduction of executed floating point opera-
tions (FLOPs) for speedup.

Subspace Iteration (SI) most computing and memory intensive elements
The simultaneous iteration V ←− AV has to be computed on the whole block of vectors at
once. The use of polynomials requires two stack of vectors.
Orthogonalizing the vectors V = QR requires additional workspace.

SI undesirable traits
• Requires a fair amount of non-trivial memory management

• Performs a fairly large number of FLOPs to reach convergence.

Ritzit was implemented by RUTISHAUSER in Algol-60 which allowed for dynamical memory allocation.

Member of the Helmholtz Association October 28, 2019 Slide 8



TOPIC

The early days of subspace iteration

The resurgence of “filtered” subspace iteration

Filtering by rational functions: parallelism and load balancing
Eigencount and spectral estimates
Shifted linear systems with multiple RHS
A roadmap to filter optimization

Filtering by Chebyshev polynomials: low level kernels and the hierarchy of caches.

Summary

Member of the Helmholtz Association October 28, 2019 Slide 9



THE ENGINES BEHIND THE RESURGENCE
Density Functional Theory (DFT) and Parallelism

Electronic structure methods
Φ(x1; s1, x2; s2, . . . , xn; sn) =⇒ Λi,aφa(xi; si)

n(r) =
∑

a fa |φa(r)|2

Hohenberg-Kohn theorem

Parallelism
Introduction of hierarchy of caches (already proposed by J. von
Neumann in 1947)
Rise of multi-core CPU
General purpose cluster with thousands of CPUs
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DFT SELF-CONSISTENT FIELD CYCLE
The Schrödinger equation for a all the dgrees of freedom of a multi-atom systems translates into a
set of coupled non-linear low-dimensional self-consistent Kohn-Sham (KS) equation

∀ a solve ĤKSφa(r) =

(
− ~2

2m
∇2 + V0(r)

)
φa(r) = εaφa(r)

Initial guess
for charge density

nstart(r)

Compute discretized
Kohn-Sham
equations

Solve a set of
eigenproblems

P(`)
k1
. . .P(`)

kN

Compute new
charge density

n(`)(r)

Converged?
|n(`) − n(`−1)| < η

OUTPUT
Electronic
structure,
. . .

No

Yes
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ZOO OF METHODS

LDA
GGA

LDA + U
Hybrid functionals
GW-approximation

Plane waves
Localized basis set
Real space grids
Green functions

All-electron
Pseudo-potential

Shape approximations
Full-potential

Spin polarized calculations

Finite differences
Non-relaticistic eqs.

Scalar-relativistic approx,
Spin-orbit coupling

Dirac equation

(
− ~2

2m∇
2 + V0(r)

)
φa(r) = εaφa(r)
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A NEW HIERARCHY OF MEMORIES

Registers

Level 1 Cache

Level 2 Cache

Level 3 Cache

Main Memory

Access
time

Lowest

Highest

Size (bytes)

Smallest

Biggest

Cost ($)

Highest

Lowest
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MASSIVE PARALLELISM

Multi-core CPUs
High throughput and low latency interconnect⇒ large intranode networks
General purpose computing clusters based on commodity (cheap) hardware
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TWO METHODS, ONE SUBSPACE
Rational Filters (FEAST)
- E. POLIZZI, Density-matrix-based algorithm
for solving eigenvalue problems. Phys. Rev. B
79, 115112 (2009)

Polynomial Filters
Y. ZHOU ET AL., Self-consistent field
calculations using Chebyshev-filtered subspace
iteration. J. Comp. Phys. 219, 172-184 (2006).

Features

Target: Ax = λBx with
A = AH ,B = BH and B s.p.d.
Type: Sparse matrices
Filter: r(A,B) =

∑n
i=1 βi(A− ziB)−1B

Main kernel: Linear system solver
Convergence: Solver accuracy,
eigevalues count, filter accuracy.
Memory impact: Very high.
FLOP count: Moderately high.

Target: Ax = λx with A = AH

Type: Sparse matrices
Filter: Chebyshev polynomial Cm(A)
of degree m

Main kernel: Mat-Vec
Convergence: Polynomial degree.
Memory impact: Moderately high
FLOP count: Very high (depends on
kernel)
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THE EVOLUTION

A proliferations of codes

Rational filter eigensolves
FEAST, IFEAST, PFEAST,etc.
z-Pares
PHIST
CISS
FITLAN
...

Polynomial Filter eigensolvers
ChASE
ESVL
BEAST
DGCheFSI
ChebFD
...
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FRAMEWORK
The problem

Au = λBu, λ ∈ [a, b], A,B ∈ Cn×n (1)

The domain

0 20 40 60 80 100

λmaxλmin few eigenvalues clustera b

The filter

r(A,B) :=

n∑
i

βi(A− Bzi)
−1B ≈ 1

2πi

∮
Γ

(A− zB)−1B dz ≡
∑

λj ∈ [a b]

ujuT
j B
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METHOD

REPEAT UNTIL CONVERGENCE:

2 Filter a block of vectors V ←− r(A,B)V =
∑n

i=1 βi(A− Bzi)
−1BV

3 Re-orthogonalize the vectors outputted by the filter; V = QR.

4 Compute the Rayleigh quotient G = QHÃQ.

5 Compute the primitive Ritz pairs (Λ,Y) by solving for GY = YΛ.

6 Compute the approximate Ritz pairs (Λ,V ← QY).

END REPEAT

Core elements
1 Relies on good estimates of number µ[a b] of eigenvalues in [a b]

2 Solve for multiple right-hand side linear systems (A− Bzi)W = βiBV per complex pole zi

3 Accuracy depends on the accuracy of the projector r(A,B)
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PARALLELISM

[a, b]

[a1, b1] [a2, b2]

(A− Bz1)W = β1BV

(A− Bz1)w1 = β1Bv1 · · · (A− Bz1)wk = β1Bvk

· · · (A− Bzn)W = βnBV

· · · · · · [ap, bp]Level 1

Level 2

Level 3

Member of the Helmholtz Association October 28, 2019 Slide 20



LOAD BALANCING

1 Level 1 is influenced by
the evenness in the distribution of number µ[aj bj] of eigenvalues in each sub-interval [aj bj];
the effectiveness of the projector r(A,B) in filtering the subspace corresponding to each single
interval [aj bj].

2 Level 2 is influenced by
the time to solution for linear systems (A− Bzi)W = βiBV defined by the same matrices but distinct
shifts (poles) zi and RHS coefficients βi;
the efficiency of the projector r(A,B) in regulating the number of subspace iterations until
convergence;
the number µ[aj bj] of eigenvalues in [aj bj] which is directly related to the size of the RHS of the
linear systems.

3 Level 3 is influenced by
the time to solution for linear systems (A− Bzi)wk = βiBvk defined by the same matrices but distinct
RHS vk;
the efficiency of the projector r(A,B) in regulating the number of subspace iteration until
convergence.
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THREE IMPORTANT ELEMENTS
Eigenvalue distribution across sub-intervals

√
Kernel Polynomial Method or Lanczos DoSa + Stochastic esti-

mateb are a good approach to address issue.
aL. Lin et al. DOI:10.1137/130934283
bEDN et al. DOI:abs/10.1002/nla.2048

Iterative linear solvers
Matching linear solver + pre-conditioner for shifted linear systems
and predicting relative time to solution.

Efficiency and robustness of rational filter

⇒ Optimize filter using Non-linear Least Squares for best
worst-case convergenceab.

aJ. Winkelmann, EDN DOI:10.3389/fams.2019.00005
bK. Kollnig, EDN To Be Submitted to SISC
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ESTIMATING THE SPECTRAL EXTREMA
Estimate of λ1 and bsup > λN : simple repeatition of few Lanczos steps1

1. Compute k Lanczos steps

AU = UTk + fke>k Tk = ZHΛ̃kZ Λ̃k = diag[λ̃1, . . . , λ̃k]

2. Compute upper bound
bsup = ‖fk‖2 + max[λ̃1, . . . , λ̃k]

3. Estimate lower eigenvalue
λ1 = min[λ̃1, . . . , λ̃k]

k ∼ 25 is usually sufficient

1Based on work by Zhou and Li (2011)
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ESTIMATING THE SPECTRAL DISTRIBUTION
Additional Laczos steps are executed to build a spectral density2 φ̃(t).

1. Compute nvec times k Lanczos steps

AU[j] = U[j]T [j]
k + f [j]

k e>k T [j]
k = (Z[j])HΛ̃

[j]
k Z[j] Λ̃

[j]
k = diag[λ̃

[j]
1 , . . . , λ̃

[j]
k ]

2. Compute the spectral density

φ̃(t) =
1

nvec

nvec∑
j=1

k∑
i=0

|Z[j]
1,i|

2gσ(t − λ̃[j]
i )

Width of the Gaussian σ = 0.25 ∗ |bsup − λ1|
Number of random vectors nvec = 3÷ 5
2Based on work by Lin et al. (2016)
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STOCHASTIC ESTIMATES OF EIGENVALUE COUNT

Stochastic estimator

Trace[r(A,B)] ≈ n
nv

m∑
j=1

βj

nv∑
k=1

v>k (A− zjB)−1Bvk; vk[i] random i.i.d.
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Sample vectors

Ei
ge

nv
al
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nt

Case: na5;   nc = 25;   nv = 300

 

 

RQ samples (nc = 5)
RQ samples (nc = 25)
Running mean (nc = 5)
Running mean (nc = 25)

Exact
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THE (STILL) EXISTING BOTTLENECK
Linear systems solution

The general issue

Solving many linear system with multiple shifts and multiple right-hand-sides.

1 Algorithms favoring exchange of information for a higher degree of parallelism: MHGMRES,
BGMREG-Sh, etc.

2 Algorithms favoring block operations for a better use of performant kernels: block variants of
BiCGStab, QMR, GMRES in combination with middleware libraries such as OSKI, GHOST,
etc.

No matter if one aims at more parallelism or more performance, it is still very difficult to balance
workloads across distinct shifs and RHS.

Linear systems and load balancing

(i) Must match solver + preconditioner to linear system (Anamod, Lighthouse)
(ii) Must predict relative time to solution across shifts+RHS so as to assign resources at runtime.
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OPTMIZING THE FILTER
Setting up the problem

0 20 40 60 80 100

λmaxλmin few eigenvalues clustera b

Ideal filter

1(a,b)(x) =

{
1, if x ∈ [a, b],

0, otherwise
. (2)

(Symmetric) Rational filter

rβ,z(x) :=

m∑
i=1

βi

x− zi
+

βi

x− zi
− βi

x + zi
− βi

x + zi
, x ∈ R, with β ∈ Cm, z ∈ (H+R)m (3)

Objective function

fω(β, z) :=

∫ ∞
−∞

ω(x) (1(a,b)(x)− rβ,z(x))2 dx, (4)

Minimization problem
argmin

β∈Cm,z∈(H+R)m
fω(β, z). (5)
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SLISE FILTERS
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm

Supports only real-valued objective functions fω : Cm × H+R → R ⇒ f̃ω : R4m → R

f̃ (


(
<(β>)
<(z>)

)
(
=(β>)
=(z>)

)
) := f (<(β) + i=(β),<(z) + i=(z)). (6)

Gauss-Newton method with inverse Hessian f̃ω recursively defined as

H0 := I4m, Hk+1 := (I4m −
skyT

k

yT
k sk

) Hk (I4m −
yksT

k

yT
k sk

) +
sksT

k

yT
k sk

, (7)

with
sk := xk+1 − xk, yk := ∇f̃ (xk+1)−∇f̃ (xk), (8)

Very fast convergence
Starting position: existing filters (e.g. Gauss-Legendre, Elliptic)
Dependent on weight function ω
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BEYOND SLISE: WORST-CASE CONVERGENCE
Conventions
In the rest of the slides we maintain the following notations

Standard interval [a, b] −→ [−1, 1],
Active subspace size M0 = C × µ[a,b] and C ≥ 1,
Gap parameter G ∈ (0, 1) such that G < 1 < G−1 (−G−1 < −1 < −G).

Best Worst-Case Convergence Rate (WCR)

Given a rational filter r and some fixed gap parameter G ∈ (0, 1), a filtered subspace iteration
converges linearly, with probability one, at a convergence rate no larger than

wG(r) =
maxx∈[−∞,−G−1]∪[G−1,∞] |r(x)|

minx∈[−G,G] |r(x)|
,

as long as no eigenvalues lie within [−G−1,−G] ∪ [G,G−1].
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BEYOND SLISE: THE WISE FILTERS

New minimization problem


β′, z′ ← argmin

β,z
fω′(β, z)

ω′ ← argmin
ω

wG(rβ,z[ω]).

Minimize WCR instead of Subspace Iteration convergence rate.
Nested minimization: requires thousands of SLiSe “minimizations”.
Derivative-free minimization: Nelder-Mead algorithm.
Eliminate parameter dependence on weight functions.
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TEST ENVIRONMENT
Single test

CNT matrix, N = 12,450 with 86,808 nnz
Interval [a, b] = [−65.0, 4.96]

M = 100
(Large) Benchmark set

2116 intervals defining the corresponding interior eigenproblem,
Each interval contains between 5 and 20 % of the total spectrum of Si2 problem,
Interval are selected based on “feature points”: neighborhood of an identifiable spectral
feature, such as a spectral gap or a cluster.
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SINGLE TEST WITH FEAST

Best worst-case convergence of FEAST strongly correlates with WCR of filter,
Size of the active subspace M0 is a confounding factor: big values of C mask the correlation
between WCR and τ ,
WiSe filters performance hardly depends on number of poles m.
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BENCHMARK SET WITH FEAST

Number of poles fixed to m = 4,
Confirms that FEAST with WiSe filter only influenced by WCR,
For larger active subspaces Gauss-Legendre is competitive with WiSe but costs more FLOPs.
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THE CORE OF THE ALGORITHM: CHEBYSHEV FILTER
The basic principle

Theorem
Let |γ| > 1 and Pm denote the set of polynomials of degree smaller or equal to m. Then the extremum

min
p∈Pm,p(γ)=1

max
t∈[−1,1]

|p(t)|

is reached by

pm(t) .
=

Cm(t)
Cm(γ)

.

where Cm is the Chebyshev polynomial of the first kind of order m, defined as

Cm(t) =

{
cos (m arccos(t)) , t ∈ [−1, 1] ;
cosh (m arccosh(t)) , |t| > 1.
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DIVIDE AND CONQUER
Chebyshev polynomials
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SUBSPACE ITERATION
Power Iteration: Given a generic vector v =

∑n
i=1 sixi

vm = Amv =

n∑
i=1

si Amxi =

n∑
i=1

si λ
m
i xi = s1x1 +

n∑
i=2

si

(
λi

λ1

)m

xi ∼ s1x1

Subspace iteration + Chebyshev polynomials:

vm = pm(A)v =

n∑
i=1

si pm(A)xi =

n∑
i=1

si pm(λi)xi

≈
nev∑
i=1

siCm(
λi − c

e
)xi +

n∑
j=nev+1

sjxj

Reorthogonalization + Rayleigh− Ritz

≈
nev∑
i=1

sixi +

n∑
j=nev+1

Si
j

1
|ρj|m

xj


∼

∑nev
i=1 sixi
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THE CORE OF THE ALGORITHM: CHEBYSHEV FILTER
In practice

Three-terms recurrence relation
Cm+1 (t) = 2xCm (t)− Cm−1 (t) ; m ∈ N, C0 (t) = 1, C1 (t) = t

Zm
.
= pm(Ã) Z0 with Ã = A− cIN and c =

bsup+µnev
2 e =

bsup−µnev
2

FOR: i = 1→ deg− 1

Zi+1 ← 2
σi+1

e
Ã × Zi − σi+1σi Zi−1 xHEMM

END FOR.
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CHASE LIBRARY

open source library (BSD 2.0 license)

https://github.com/SimLabQuantumMaterials/ChASE

https://doi.org/10.1145/3313828

Highlights

Modern C++ interface: easy-to-integrate in application codes.
Multiple parallel implementations: performance portability.
Excellent strong- and weak-scale performance.
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WORKLOAD DISTRIBUTION

Lanczos <0.2%

Chebyshev filter

�88%

�3.2%

�8.7%

Residuals Convergence

Rayleigh-Ritz

Au98Ag10 - n=8,970 - 32 cores. xGEMM most expensive part
Parallelizes easily over

MPI
GPUs

Good weak scaling
Recall: Matrix dimensions skewed
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ON SEQUENCES OF EIGENPROBLEMS
As a function of DFT Self-Consistent Field iterations

Speed-up = CPU time (input random vectors)
CPU time (input approximate eigenvectors)
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STRONG SCALING
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SUMMARY AND OUTLOOK

Rational filters for Hermitian problems are mature: competitive, fast to compute, only
dependence on gap parameter G, stable w.r.t. convergence rate, minimize total FLOP count.
Estimation of spectral distribution and eigenvalue count is dependable and inexpensive.
Solving linear systems for multiple shifts and RHS with iterative solvers have still open issues.
Polynomial filtering is very effective in extracting FLOPS and be competitive with other solvers.
Both rational and polynomial filtering lend itself to effective parallelization on multi-cores and
many-cores platforms.

Outlook
Integrating rational filters in the ChASE library to enable solution of interior, exterior, dense
and sparse problems.
Prediction of relative time to solution for linear systems solves,
Optimizing filters for general complex eigenproblems.
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THANK YOU

https://github.com/SimLabQuantumMaterials/

QUANTUMATERIALS

1

e.di.napoli@fz-juelich.de

http://www.fz-juelich.de/ias/jsc/slqm
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