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IT STARTED WITH E. SCHRÖDINGER . . .

ih̄
∂Ψ

∂t
= HΨ
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. . . IT ENDED WITH P.A.M. DIRAC.

“The underlying physical laws necessary for the mathematical

theory of a large part of physics and the whole of chemistry are

thus completely known, and the difficulty is only that the exact

application of these laws leads to equations much too

complicated to be soluble. It therefore becomes desirable that

approximate practical methods of applying quantum

mechanics should be developed, which can lead to an

explanation of the main features of complex atomic systems

without too much computation”.
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APPROXIMATE SOLUTIONS
A plethora of methods

Definition

Ab initio is a Latin term meaning “from the beginning” and is derived from the Latin ab (“from”) +

initio, ablative singular of initium (“beginning”).

Ab initio molecular orbitals methods:

Hartree-Fock – # ops scales as ∼ N4

Møller-Plesset

Configuration Interaction (CI)

Coupled Clusters (CC)

etc.







– # ops scales as N4÷N7

Ab initio electron density methods:

Density Functional Theory (DFT) – # ops scales as N lnN÷N3

Car-Parrinello Molecular Dynamics (MD)
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TRENDS IN ACADEMIA AND INDUSTRY

Private sector:
1 Target (an example): the restructuring of the energy system by investigating materials for

energy conversion processes and storage technologies.

2 Method: Using HTC for a large number of small scale simulations aimed at low impact

materials screening

3 Path: Stable and verified simulation software (license

preferred).

4 Time frame: 3 to 6 months

Public sector across topics and disciplines

1 Target: Fundamental research in method and functionality development

2 Method: Using large scale computations to simulate real world materials

3 Path: Code implementation without concern for abstractions and efficiency

4 Time frame: 1 to 3 years
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TRENDS IN THE SUPERCOMPUTING INDUSTRY
Summit (ORNL) SuperMUC-NG (LRZ)

Manufacturer: IBM

Processor: IBM POWER9 (2/node) 3.07GHz

GPUs: 27,648 NVIDIA Volta V100s (6/node)

Cores: 2,414,592 – Nodes: 4,608

Memory/node: 512GB DDR4 + 96GB HBM2

Interconnect: Mellanox EDR Infiniband

Peak performance: 200 PFlop/s

Manufacturer: Lenovo

Processor: Xeon Skylake Platinum 3.1GHz

GPUs: –

Cores: 311,040 – Nodes: 6,480

Memory/node: 96 GB

Interconnect: Intel Omni-Path

Peak performance: 27 PFlop/s
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TRENDS IN THE SUPERCOMPUTING INDUSTRY
Modular Supercomputer

JUWELS Module 1 (FZJ) JUWELS Module 2 (FZJ)

Manufacturer: Bull

Processor: Xeon Skylake Platinum 2.7GHz

GPUs: –

Cores: 122,448 – Nodes: 2,567

Memory/node: 96GB DDR4

Interconnect: Mellanox EDR Infiniband

Peak performance: 9 PFlop/s

Manufacturer: ??

Processor: Server Class

GPUs: 4GPUs/node

Cores: ??

Memory/node: ?? GB

Interconnect: at least 800Gbit/s

Peak performance: ∼ 100 PFlop/s
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HIGH-PERFORMANCE COMPUTATIONS

Observations:

Numerical algorithms are ubiquitous in Condensed Matter Physics

Numerical libraries are used as black boxes.

Domain-specific knowledge does not influence algorithm choice.

Rigid legacy codes are hard to modernize.

Goal

Design and optimize linear algebra algorithms in order to:

exploit available knowledge.

increase the parallelism of complex tasks.

facilitate performance portability
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HPC TRANSFER
Issues and workflows

Legacy codes
Conceived with a rigid abstraction model

Developed by application scientists in isolation

Carry the “curse of early optimization”

Non-modular, often written in FORTRAN

Many, many functionalities

Refactoring and modernization
Code modernization

Algorithm optimization

Performance portability

Code refactoring

Inclusion of domain-specific knowledge
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THE FLAPW MATHEMATICAL MODEL
Generation of H and S

Set of basis functions

ϕt (r) =







l=lmax

∑
l=0

m=+l

∑
m=−l

[
A(l,m),a,tul,a (r)+B(l,m),a,tu̇l,a (r)

]
Yl,m (r̂a) ath MT

1√
Ω

exp(iKt · r) INT

(1)

Kohn-Sham Hamiltonian and Overlap matrices

(H)t′,t = ∑
a

∫∫
ϕ∗t′(r)ĤKSϕt(r)dr, (S)t′,t = ∑

a

∫∫
ϕ∗t′(r)ϕt(r)dr. (2)
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THE FLAPW MATHEMATICAL MODEL
Generation of H and S

The Hamiltonian matrix

(H)t′,t = ∑
a

∑
L′,L

(

A∗L′,a,t′ T
[AA]
L′,L;a

AL,a,t

)

+
(

A∗L′,a,t′ T
[AB]
L′,L;a

BL,a,t

)

+
(

B∗L′,a,t′ T
[BA]
L′,L;a

AL,a,t

)

+
(

B∗L′,a,t′ T
[BB]
L′,L;a

BL,a,t

)

. (3)

The new matrices T
[... ]
L′,L;a

∈ CNL×NL are dense as well and their computation involves multiple

integrals between the basis functions and the non-spherical part of the potential Veff.

The Overlap matrix

(S)t′,t = ∑
a

∑
L=(l,m)

A∗L,a,t′AL,a,t +B∗L,a,t′BL,a,t ‖u̇l,a‖2 (4)
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HAMILTONIAN AND OVERLAP MATRIX GENERATION.

Matrix visualization

H =
NA

∑
a=1

AH
a T

[AA]
a Aa

︸ ︷︷ ︸

HAA

+AH
a T

[AB]
a Ba +BH

a T
[BA]
a Aa +BH

a T
[BB]
a Ba

︸ ︷︷ ︸

HAB+BA+BB

S =
NA

∑
a=1

AH
a Aa

︸ ︷︷ ︸

SAA

+
NA

∑
a=1

BH
a U̇H

a U̇aBa

︸ ︷︷ ︸

SBB

Aa and Ba ∈ CNL×NG while T ...
a ∈ CNL×NL and Hermitian.

NL = (lmax +1)2 ≤ 121, NG = 1,000÷50,000, and NA = number of atoms.
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HAMILTONIAN AND OVERLAP MATRIX GENERATION

Data layout

NG

NL A1

A2

.

.

.

ANA

A∗

NG

NANL

1 S += AH
∗ A∗ (zherk: 4NANLN2

G FLOPs)

2 B∗ =: U̇∗B∗ (2NANLNG FLOPs)

3 S += BH
∗ B∗ (zherk: 4NANLN2

G FLOPs)
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PORTED TO HYBRID PLATFORMS (CPU+GPU)

NaCl (Kmax = 4.0): IvyBridge Haswell

TiO2 (Kmax = 3.6): IvyBridge Haswell
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Figure 1: Speedup of our algorithm over FLEUR with kmax = 4 and increasing parallelism

EDN, E. Peise, M. Hrywniak, and P. Bientinesi. Comp. Phys. Comm. 211 (2017), pp. 61-72, [arXiv:1602.06589].

Davor Davidovic̀, D. Fabregat-Traver, M. Höhnerbach, EDN. Concurrency Computat. Pract Exper. 30(24), e4905 (2018) doi: 10.1002/cpe.4905, [arXiv:1712.07206]
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PORTED TO HYBRID PLATFORMS (CPU+GPU)
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Figure: Speedup on RWTH-GPU for all implementations, relative to original code.

EDN, E. Peise, M. Hrywniak, and P. Bientinesi. Comp. Phys. Comm. 211 (2017), pp. 61-72, [arXiv:1602.06589].

Davor Davidovic̀, D. Fabregat-Traver, M. Höhnerbach, EDN. Concurrency Computat. Pract Exper. 30(24), e4905 (2018) doi: 10.1002/cpe.4905, [arXiv:1712.07206]
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PARALLEL NUMERICAL INTEGRATION IN TUFRG
The mathematical equations

Ṗ(l) = VP(l) Ẋ
pp
(l)VP(l) , (5)

Ċ(l) =−VC(l) Ẋ
ph
(l)VC(l) , (6)

Ḋ(l) = 2VD(l) Ẋ
ph
(l)VD(l)−VC(l) Ẋ

ph
(l)VD(l)−VD(l) Ẋ

ph
(l)VC(l) , (7)

where

X
pp
m,n(l) =

∫
dp

[∫
dp0 G

(

p0,
l

2
+p

)

G

(

−p0,
l

2
−p

)]

fm(p) fn(p) , (8)

X
ph
m,n(l) =

∫
dp

[∫
dp0 G

(

p0,p+
l

2

)

G

(

p0,p−
l

2

)]

fm(p) fn(p) . (9)
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PARALLEL NUMERICAL INTEGRATION IN TUFRG
Where the computing time goes?

Assemble interaction

P,C,D → VP

∼ 20% CPU Time −→

Perform 2D integration

χ̇
pp
m,n(l) ∀ m,n,l

∼ 80% CPU Time

↑ ↓
Iterate ODE for P, C, D

d
dΩ Pm,n(l)

< 1% CPU Time ←−

Matrix multiplication

∑p,q VP
m,p(l) χ̇

pp
p,q(l)VP

q,n(l)

< 1% CPU Time
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PARALLEL NUMERICAL INTEGRATION IN TUFRG
Where does the accuracy go?

Error definition

ERR[φ] = |Qn1
φ−Qn2

φ|,
where with Qn φ = Q(φ,D,n) we indicate the computation of the integral Φ =

∫
D

φ over the domain

D through numerical quadrature with n integration points

ERR[Ṗm,n] =

∣
∣
∣
∣
∣
∑
p,q

[
VP

m,p

(
QN χ̇pp

p,q

)
VP

q,n−VP
m,p

(
Q2N χ̇pp

p,q

)
VP

q,n

]

∣
∣
∣
∣
∣

≤
∥
∥VP

m,:

∥
∥

∞

∥
∥VP

:,n

∥
∥

∞ ∑
p,q

∣
∣QN χ̇pp

p,q−Q2N χ̇pp
p,q

∣
∣ ,

(10)
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PARALLEL NUMERICAL INTEGRATION IN TUFRG
Computing less is computing better

Function evaluations
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J. Lichtenstein, J. Winkelmann, D. Sanchez de la Pena, Toni Vidovic̀, EDN. Lecture Notes in Computer Science, High-Performance Scientific Computing 10164 (2016), pp. 170-184,

[arXiv:1610.09991]
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A DEEPEST WORKFLOW

Implementation
Performance Prediction

Algorithmic Library

Quantum
Materials Science
Mathematical

Models
Simulation

Codes

Computing Algorithms
Automation

Domain-specific Compilers

Variants

TASK T1

Variants

TASK T2

Phase #1

Phase #2

Phase #3

Phase #4
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DFT SELF-CONSISTENT FIELD
General framework

Initial guess

for charge density

nstart(r)

Initialize

A
(ℓ)
k and B

(ℓ)
k

matrices

Solve a set of
eigenproblems

P
(ℓ)
k1

. . .P
(ℓ)
kN

Compute new

charge density

n(ℓ)(r)

Converged?

|n(ℓ)−n(ℓ−1)|< η

OUTPUT
Electronic
structure,

. . .

No

Yes
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THE CASE OF THE FLAPW METHOD

Observations:

1 every P
(ℓ)
k : A

(ℓ)
k x = B

(ℓ)
k λx is a generalized eigenvalue problem;

2 A and B are hermitian (B is positive definite);

3 required: lower 2÷20 % of eigenpairs;

4 eigenvectors of problems of same k are seemingly uncorrelated across iterations i

5 k-vector index: k = 1 : 10÷100;

6 iteration cycle index: ℓ= 1 : 20÷50.
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EIGENSOLVER ALGORITHM: SUBSPACE ITERATION

Two distinct optmization opportunities:

Knowledge exploitation:
Solution of previous SCF cycle can be used to “precondition” the solver at the next
iteration

Algorithm optimization:
Polynomial degree can be pre-computed in order to minimize Mat-Vec
multiplications
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EXPLOITING KNOWLEDGE
Preconditioning the eigensolver

ITERATION (ℓ)

P
(ℓ)
k1

(X
(ℓ)
k1
,Λ

(ℓ)
k1
)

P
(ℓ)
k2

(X
(ℓ)
k2
,Λ

(ℓ)
k2
)

P
(ℓ)
kN

(X
(ℓ)
kN
,Λ

(ℓ)
kN
)

X ≡ {x1, . . . ,xn}

iterative

solver

iterative

solver

iterative

solver

ITERATION (ℓ+1)

P
(ℓ+1)
k1

(X
(ℓ+1)
k1

,Λ
(ℓ+1)
k1

)

P
(ℓ+1)
k2

(X
(ℓ+1)
k2

,Λ
(ℓ+1)
k2

)

P
(ℓ+1)
kN

(X
(ℓ+1)
kN

,Λ
(ℓ+1)
kN

)

Λ≡ diag(λ1, . . . ,λn)

iterative

solver

iterative

solver

iterative

solver

Next

cycle
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A KNOWLEDGE-INCLUSIVE OPTIMIZED EIGENSOLVER
License: open source — BSD 2.0

GitHub: https://github.com/

SimLabQuantumMaterials/ChASE

Docs: https://simlabquantummaterials.

github.io/ChASE/index.html

Reference: https://doi.org/10.1145/3313828

Highlights

Sequences of correlated eigenvalue problems

Modern C++ interface: easy-to-integrate, performance portable

Excellent strong- and weak-scale performance
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SIMLAB QUANTUM MATERIALS (SLQM)

SLQM area of activities

Method development, algorithmic design, and code modernization

HPC Knowledge transfer

Programming models, Performance portability, Hybrid architectures, etc..

Mission

The Simulation Laboratory Quantum Materials (SLQM) provides expertise in the field of

quantum-based simulations in Materials Science with a special focus on high-performance

computing. SLQM acts as a high-level support structure in dedicated projects and hosts research

projects dealing with fundamental aspects of code development, algorithmic optimization, and

performance improvement. The Lab acts as an enabler of large scale simulations on current HPC

platforms as well as on future architectures by targeting domain-specific co-design processes.
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THE SLQM TEAM

Edoardo Di Napoli – Senior researcher

Paul Baumeister – Senior researcher

Daniel Rohe – Optimization and support

Xinzhe Wu – Postdoctoral researcher

Sebastian Achilles – Senior PhD

Miriam Hinzen – Senior PhD

Jonas Dedden – Master
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THANK YOU

QUANTUMATERIALS

For more information

e.di.napoli@fz-juelich.de

http://www.fz-juelich.de/ias/jsc/slqm
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