001     868419
005     20210130004216.0
024 7 _ |a 10.1016/j.envres.2019.108806
|2 doi
024 7 _ |a 0013-9351
|2 ISSN
024 7 _ |a 1096-0953
|2 ISSN
024 7 _ |a 2128/23789
|2 Handle
024 7 _ |a pmid:31627026
|2 pmid
024 7 _ |a WOS:000497259100015
|2 WOS
037 _ _ |a FZJ-2020-00022
082 _ _ |a 610
100 1 _ |a Wu, Di
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Quantifying N2O reduction to N2 during denitrification in soils via isotopic mapping approach: Model evaluation and uncertainty analysis
260 _ _ |a San Diego, Calif.
|c 2019
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1578398166_27693
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The last step of denitrification, i.e. the reduction of N2O to N2, has been intensively studied in the laboratory to understand the denitrification process, predict nitrogen fertiliser losses, and to establish mitigation strategies for N2O. However, assessing N2 production via denitrification at large spatial scales is still not possible due to lack of reliable quantitative approaches. Here, we present a novel numerical “mapping approach” model using the δ15Nsp/δ18O slope that has been proposed to potentially be used to indirectly quantify N2O reduction to N2 at field or larger spatial scales. We evaluate the model using data obtained from seven independent soil incubation studies conducted under a He–O2 atmosphere. Furthermore, we analyse the contribution of different parameters to the uncertainty of the model. The model performance strongly differed between studies and incubation conditions. Re-evaluation of the previous data set demonstrated that using soils-specific instead of default endmember values could largely improve model performance. Since the uncertainty of modelled N2O reduction was relatively high, further improvements to estimate model parameters to obtain more precise estimations remain an on-going matter, e.g. by determination of soil-specific isotope fractionation factors and isotopocule endmember values of N2O production processes using controlled laboratory incubations. The applicability of the mapping approach model is promising with an increasing availability of real-time and field based analysis of N2O isotope signatures.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Well, Reinhard
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Cárdenas, Laura M.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Fuß, Roland
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Lewicka-Szczebak, Dominika
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Köster, Jan Reent
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Brüggemann, Nicolas
|0 P:(DE-Juel1)142357
|b 6
700 1 _ |a Bol, Roland
|0 P:(DE-Juel1)145865
|b 7
773 _ _ |a 10.1016/j.envres.2019.108806
|g Vol. 179, p. 108806 -
|0 PERI:(DE-600)1467489-0
|n Part A
|p 108806 -
|t Environmental research
|v 179
|y 2019
|x 0013-9351
856 4 _ |y Published on 2019-10-10. Available in OpenAccess from 2021-10-10.
|u https://juser.fz-juelich.de/record/868419/files/Wu_etal_Environ_Res_postprint_final.pdf
856 4 _ |y Published on 2019-10-10. Available in OpenAccess from 2021-10-10.
|x pdfa
|u https://juser.fz-juelich.de/record/868419/files/Wu_etal_Environ_Res_postprint_final.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:868419
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)142357
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)145865
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ENVIRON RES : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21