000868421 001__ 868421
000868421 005__ 20240712100816.0
000868421 0247_ $$2doi$$a10.5194/acp-19-15629-2019
000868421 0247_ $$2ISSN$$a1680-7316
000868421 0247_ $$2ISSN$$a1680-7324
000868421 0247_ $$2Handle$$a2128/24191
000868421 0247_ $$2altmetric$$aaltmetric:73039356
000868421 0247_ $$2WOS$$aWOS:000504010900003
000868421 037__ $$aFZJ-2020-00024
000868421 082__ $$a550
000868421 1001_ $$0P:(DE-Juel1)169291$$aYan, Xiaolu$$b0$$eCorresponding author
000868421 245__ $$aThe efficiency of transport into the stratosphere via the Asian and North American summer monsoon circulations
000868421 260__ $$aKatlenburg-Lindau$$bEGU$$c2019
000868421 3367_ $$2DRIVER$$aarticle
000868421 3367_ $$2DataCite$$aOutput Types/Journal article
000868421 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1580821811_3542
000868421 3367_ $$2BibTeX$$aARTICLE
000868421 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000868421 3367_ $$00$$2EndNote$$aJournal Article
000868421 520__ $$aTransport of pollutants into the stratosphere via the Asian summer monsoon (ASM) or North American summer monsoon (NASM) may affect the atmospheric composition and climate both locally and globally. We identify and study the robust characteristics of transport from the ASM and NASM regions to the stratosphere using the Lagrangian chemistry transport model CLaMS driven by both the ERA-Interim and MERRA-2 reanalyses. In particular, we quantify the relative influences of the ASM and NASM on stratospheric composition and investigate the transport pathways and efficiencies of transport of air masses originating at different altitudes in these two monsoon regions to the stratosphere. We release artificial tracers in several vertical layers from the middle troposphere to the lower stratosphere in both ASM and NASM source regions during July and August 2010–2013 and track their evolution until the following summer. We find that more air mass is transported from the ASM and NASM regions to the tropical stratosphere, and even to the southern hemispheric stratosphere, when the tracers are released clearly below the tropopause (350–360 K) than when they are released close to the tropopause (370–380 K). For tracers released close to the tropopause (370–380 K), transport is primarily into the northern hemispheric lower stratosphere. Results for different vertical layers of air origin reveal two transport pathways from the upper troposphere over the ASM and NASM regions to the tropical pipe: (i) quasi-horizontal transport to the tropics below the tropopause followed by ascent to the stratosphere via tropical upwelling, and (ii) ascent into the stratosphere inside the ASM/NASM followed by quasi-horizontal transport to the tropical lower stratosphere and further to the tropical pipe. Overall, the tropical pathway (i) is faster than the monsoon pathway (ii), particularly in the ascending branch. The abundance of air in the tropical pipe that originates in the ASM upper troposphere (350–360 K) is comparable to the abundance of air ascending directly from the tropics to the tropical pipe 10 months after (the following early summer) the release of the source tracers. The air mass contributions from the ASM to the tropical pipe are about 3 times larger than the corresponding contributions from the NASM. The transport efficiency into the tropical pipe, the air mass fraction inside this destination region normalized by the mass of the domain of origin, is greatest from the ASM region at 370–380 K. Although the contribution from the NASM to the stratosphere is less than that from either the ASM or the tropics, the transport efficiency from the NASM is comparable to that from the tropics.
000868421 536__ $$0G:(DE-HGF)POF3-244$$a244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)$$cPOF3-244$$fPOF III$$x0
000868421 588__ $$aDataset connected to CrossRef
000868421 7001_ $$0P:(DE-Juel1)129130$$aKonopka, Paul$$b1
000868421 7001_ $$0P:(DE-Juel1)129141$$aPloeger, Felix$$b2
000868421 7001_ $$0P:(DE-Juel1)173992$$aPodglajen, Aurelien$$b3
000868421 7001_ $$00000-0001-6551-7017$$aWright, Jonathon S.$$b4
000868421 7001_ $$0P:(DE-Juel1)129138$$aMüller, Rolf$$b5
000868421 7001_ $$0P:(DE-Juel1)129145$$aRiese, Martin$$b6
000868421 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-19-15629-2019$$gVol. 19, no. 24, p. 15629 - 15649$$n24$$p15629 - 15649$$tAtmospheric chemistry and physics$$v19$$x1680-7324$$y2019
000868421 8564_ $$uhttps://juser.fz-juelich.de/record/868421/files/invoice_Helmholtz-PUC-2020-17.pdf
000868421 8564_ $$uhttps://juser.fz-juelich.de/record/868421/files/acp-19-15629-2019.pdf$$yOpenAccess
000868421 8564_ $$uhttps://juser.fz-juelich.de/record/868421/files/invoice_Helmholtz-PUC-2020-17.pdf?subformat=pdfa$$xpdfa
000868421 8564_ $$uhttps://juser.fz-juelich.de/record/868421/files/acp-19-15629-2019.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000868421 8767_ $$8Helmholtz-PUC-2020-17$$92020-01-03$$d2020-01-03$$eAPC$$jZahlung erfolgt$$pacp-2019-586
000868421 909CO $$ooai:juser.fz-juelich.de:868421$$pdnbdelivery$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire
000868421 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169291$$aForschungszentrum Jülich$$b0$$kFZJ
000868421 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129130$$aForschungszentrum Jülich$$b1$$kFZJ
000868421 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129141$$aForschungszentrum Jülich$$b2$$kFZJ
000868421 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173992$$aForschungszentrum Jülich$$b3$$kFZJ
000868421 9101_ $$0I:(DE-HGF)0$$60000-0001-6551-7017$$aExternal Institute$$b4$$kExtern
000868421 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129138$$aForschungszentrum Jülich$$b5$$kFZJ
000868421 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129145$$aForschungszentrum Jülich$$b6$$kFZJ
000868421 9131_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0
000868421 9141_ $$y2019
000868421 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000868421 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000868421 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000868421 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2017
000868421 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000868421 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000868421 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000868421 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000868421 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000868421 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000868421 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review
000868421 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2017
000868421 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000868421 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000868421 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000868421 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000868421 9801_ $$aAPC
000868421 9801_ $$aFullTexts
000868421 980__ $$ajournal
000868421 980__ $$aVDB
000868421 980__ $$aUNRESTRICTED
000868421 980__ $$aI:(DE-Juel1)IEK-7-20101013
000868421 980__ $$aAPC
000868421 981__ $$aI:(DE-Juel1)ICE-4-20101013