000868435 001__ 868435
000868435 005__ 20240619091253.0
000868435 0247_ $$2doi$$a10.1615/TelecomRadEng.v78.i17.50
000868435 0247_ $$2ISSN$$a0040-2508
000868435 0247_ $$2ISSN$$a1943-6009
000868435 037__ $$aFZJ-2020-00030
000868435 082__ $$a620
000868435 1001_ $$0P:(DE-HGF)0$$aBarannik, A. A.$$b0$$eCorresponding author
000868435 245__ $$aON WGM RESONATOR TECHNIQUE FOR MICROWAVE CHARACTERIZATION OF SUPERCONDUCTORS IN NORMAL STATE
000868435 260__ $$aNew York, NY$$bScripta Technica, Inc.$$c2019
000868435 3367_ $$2DRIVER$$aarticle
000868435 3367_ $$2DataCite$$aOutput Types/Journal article
000868435 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1587388812_6837
000868435 3367_ $$2BibTeX$$aARTICLE
000868435 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000868435 3367_ $$00$$2EndNote$$aJournal Article
000868435 520__ $$aThe paper presents preliminary results on the analysis of the applicability of microwave measurement techniques for study the properties of superconductors in normal state using dielectric resonators excited with whispering gallery modes (WGM). The expressions for microwave surface impedance for a normal conductor are derived. The experimental technique for measuring the surface impedance of superconductors in a normal state using mm-wave sapphire WGM resonator is proposed and described. The reliability of the proposed approach is demonstrated measuring the response of a resonator with copper samples is presented.
000868435 536__ $$0G:(DE-HGF)POF3-523$$a523 - Controlling Configuration-Based Phenomena (POF3-523)$$cPOF3-523$$fPOF III$$x0
000868435 588__ $$aDataset connected to CrossRef
000868435 7001_ $$0P:(DE-HGF)0$$aGubin, Alexey$$b1
000868435 7001_ $$0P:(DE-HGF)0$$aProtsenko, I. А.$$b2
000868435 7001_ $$0P:(DE-Juel1)128738$$aVitusevich, S.$$b3
000868435 7001_ $$0P:(DE-HGF)0$$aVovnyuk, M. V.$$b4
000868435 7001_ $$0P:(DE-HGF)0$$aCherpak, Nikolay T.$$b5
000868435 773__ $$0PERI:(DE-600)2129071-4$$a10.1615/TelecomRadEng.v78.i17.50$$gVol. 78, no. 17, p. 1559 - 1566$$n17$$p1559 - 1566$$tTelecommunications and radio engineering$$v78$$x0040-2508$$y2019
000868435 909CO $$ooai:juser.fz-juelich.de:868435$$pVDB
000868435 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128738$$aForschungszentrum Jülich$$b3$$kFZJ
000868435 9131_ $$0G:(DE-HGF)POF3-523$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000868435 9141_ $$y2020
000868435 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000868435 920__ $$lyes
000868435 9201_ $$0I:(DE-Juel1)ICS-8-20110106$$kICS-8$$lBioelektronik$$x0
000868435 980__ $$ajournal
000868435 980__ $$aVDB
000868435 980__ $$aI:(DE-Juel1)ICS-8-20110106
000868435 980__ $$aUNRESTRICTED
000868435 981__ $$aI:(DE-Juel1)IBI-3-20200312