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ABSTRACT A deep learning framework is presented that transforms the task of MR image reconstruction

from randomly undersampled k-space data into pixel classification. A DL network was trained to remove

incoherent undersampling artifacts from MR images. The underlying, fully sampled, target image was

represented as a discrete quantized image. The quantization step enables the design of a convolutional

neural network (CNN) that can classify each pixel in the input image to a discrete quantized level. The

reconstructed image quality of the proposed DL classification model was compared with conventional

compressed sensing (CS) and a DL regression model. The reconstructed images using the DL classification

model outperformed the state-of-the-art compressed sensing and DL regression models with a similar

number of parameters assessed using quantitative measures. The experiments reveal that the proposed deep

learning method is robust to noise and is able to reconstruct high-quality images in low SNR scenarios where

conventional CS reconstructions and DL regression networks perform poorly. A generic design framework

for transforming MR image reconstruction into pixel classification is developed. The proposed method can

be easily incorporated into other DL-based image reconstruction methods.

INDEX TERMS Magnetic resonance imaging, compressive sensing, deep learning.

I. INTRODUCTION

Accelerating data acquisition in magnetic resonance imaging

has been an active area of research since the inception of

MRI. Initial efforts were made to accelerate the data acqui-

sition process by developing fast imaging sequences, such

as echo planar imaging [2] and gradient echo sequences [3].

However, further acceleration of MR data acquisition using

these fast imaging sequences resulted in nerve stimulation

due to the rapid switching of the magnetic field gradients.

Multiple receive channels, which were initially intended to

improve the SNR of MRI, were later found to have more

valuable application in accelerating MR data acquisition.

Accelerated MR acquisitions use multiple receiver channels

with coils placed at spatially different locations around the

patient. The underlying MR signals are modulated as a result

of the respective coil sensitivities. Parallel imaging techniq-

ues [4]–[8] exploit knowledge of the variable coil sensi-

tivities present in multichannel receiver coils to reconstruct
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MR images from accelerated, undersampled k-space data.

Compressed sensing (CS) [9], [10] is another technique

that exploits the signal sparsity inherent in MR images.

MR images are known to be sparse in a number of sig-

nal domains, including wavelet and total variation (TV).

Compressed sensing uses knowledge of this sparsity and

reconstructs the images from undersampled k-space data

using iterative reconstruction methods. In conventional

CS-MRI reconstruction, a universal sparsifying transform

is assumed (such as wavelet or TV) that transforms the

underlying image into a sparse representation. Given the

data consistency constraint, the iterative reconstruction algo-

rithm minimizes a cost function to recover this sparse

representation. CS-MRI reconstruction is a computationally-

intensive process and efforts have been made to develop

faster reconstruction methods [11]–[14] by optimizing the

algorithms or implementing them on graphics processing

units (GPU).

Deep learning [15], [16] is another rapidly growing area

finding utility in numerous imaging applications. Deep

learning, or more specifically convolutional neural networks
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(CNN) [15], have shown remarkable performance improve-

ments in a multitude of computer vision tasks, such as image

classification [1] and image segmentation [16]–[19]. Deep

learning methods have even surpassed human-level perfor-

mance in some image classification tasks [1]. Recently,

the application of deep learning to image reconstruction from

undersampled k-space MR data has been explored by a num-

ber of research groups [20]–[27]. In [21], a deep convolu-

tional neural network for solving an inverse problem was

presented with an emphasis on CT image reconstruction.

In [22], a deep learning method based on the Unet [18]

architecture was presented which learns the undersampling

artifact instead of the image to enable these artifacts to be

removed from the corrupted image. In [24], a method using

a cascade of CNN for image reconstruction from undersam-

pled data was presented, which is effectively an unrolling

of the iterative reconstruction process. In [28] a framework

based on convolutional framelets was presented, linking the

mathematical signal processing concepts to the deep learning

reconstructions. In [27], a method of reconstruction that maps

the undersampled k-space to image space was presented.

However, this method required a large amount of internal

memory and implementation of the method was only demon-

strated for small image sizes of 128 × 128. For larger image

sizes, such as 256 × 256 or 512 × 512, the implementation

poses significant technical challenges. These deep learning

methods are motivated by the fact that iterative reconstruction

can be converted to non-iterative CNN inferences.

Recent advances in deep learning are being driven by

computer vision research in which the image processing

task is usually a classification and/or segmentation task.

The output of a deep learning network for an image clas-

sification/segmentation task is a probability estimate of the

object belonging to a certain class. However, the task of

image reconstruction is significantly different from a classi-

fication/segmentation task. In image reconstruction, the DL

network is trained to learn a nonlinear mapping between

the input (images reconstructed from undersampled k-space

data) and the output (images reconstructed from fully sam-

pled k-space data). DL networks for image reconstruction

are regression networks, whereas DL networks for classifi-

cation/segmentation are classification networks.

The data acquired during MR data acquisition and

reconstructions are represented in floating-point numbers.

However, at the end of the imaging process, the images are

stored and viewed in a dicom format. In the dicom format,

images are quantized and consist of a fixed number of grey

levels determined by the number of bits used to store the

image (usually 12 to 16 bits). Motivated by the fact that MR

images are finally stored as quantized images in this work,

we present a method to directly reconstruct the quantized

images by transforming the task of image reconstruction into

a pixel classification task. Image reconstructions from a deep

learning classification network were compared with image

reconstructions from compressed sensing and a deep learning

regression network. We investigated the effect of noise on

the image reconstruction and quantitatively compared the

resultant images for low signal to noise acquisitions. The

following are the major contributions of this paper:

• A novel DL framework is introduced to model the

image reconstruction problem into a pixel classification

problem.

• A divide-and-conquer approach is developed for appli-

cation of the DL classification network to high-bit pre-

cision (i.e. 16 bit).

• The pixel classification approach with compressed sens-

ing and the conventional DL regression approach are

validated using three experiments which include T1 and

T2 weighted MR images, T1 and T2 images with added

noise, and an unseen tumor dataset.

II. BACKGROUND

A. ITERATIVE RECONSTRUCTION - COMPRESSED

SENSING MRI

The pulse sequence in MRI encodes the NMR signal into the

Fourier space using magnetic field gradients. The acquired

signal in k-space is a Fourier transform of the image. The data

acquisition can be represented as

y = Fx,

where y ∈ CN×N is the acquired k-space data, x ∈ CN×N is

the N × N image and F ∈ CN×N is a 2D Fourier transform

operator. For Cartesian CS acquisition, the acquired k-space

data is undersampled along the phase encoding (PE) direction

for 1D undersampling and in both the PE and slice encode

(SE) direction for 2D undersampling. The undersampled data

can be represented as:

yu = U ⊙ (Fx), (1)

where⊙ is an elementwise matrix product andU is an under-

sampling matrix of size N × N , with a value of 1 at the

locations where the k-space is sampled and 0 elsewhere.

Consider an image x that can be sparsely represented in the

domain ψ , i.e xs = ψx is sparse. The acquired undersampled

data (yu), in terms of a sparse representation of the underlying

image can be written as

yu = U ⊙ (Fψ−1xs), (2)

where ψ−1 is the inverse of ψ .

The CS reconstruction minimizes a cost function to recon-

struct an estimate of the fully sampled image x̂ = ψ−1x̂s from

undersampled k-space data yu, given by

min
x̂s
λ
∥

∥x̂s
∥

∥

1
+

∥

∥

∥
yu − U ⊙ (Fψ−1x̂s)

∥

∥

∥

2

2
(3)

where ‖·‖1 and ‖·‖2 are l1 and l2 norms, respectively. The

first term in the cost function enforces sparsity, whereas

the second term enforces the consistency of the estimated

x̂s with the acquired data, yu. The regularization parameter

λ determines the level of sparsity and is usually determined

empirically, depending on the noise level in the acquired data.
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index of the maximum probability as the value to the given

pixel at spatial location r . This results in an image withM =

2n discrete values, determined as:

I (r) = argmax
c
ρp (c, r). (9)

The DL-C Avg takes the weighted sum of the probability

distribution, determined as:

I (r) =

M−1
∑

c=0

c · ρp (c, r), (10)

where I (r) is the reconstructed image and ρp(c, r) is the

probability distribution predicted by the DL classification

network at spatial location r in the image for M = 2n

classes, where n is the number of bits used for quantization.

The weighted sum approximates continuous values between

[0,M − 1] instead of discrete M values, and thus minimizes

the error due to quantization.

E. DIVIDE-AND-CONQUER APPROACH FOR HIGHER BIT

PRECISION PIXEL CLASSIFICATION

The memory requirement for the network architecture in

section-III-C increases exponentially with the bit-depth.

The dynamic range of an n-bit unsigned number Nn_bit is

[0, 2n − 1]. In order to predict the probability of each pos-

sible pixel intensity using the proposed pixel classification,

the approach requires 2n channels at the output of the net-

work. The number of channels can be extremely large, for

instance for a 16 bit-depth it is 65536. The large number

of channels may not be practical due to physical memory

limitation and themodel may not generalize due to overfitting

from an increased number of parameters.

In order to make the classification network practical for

higher bit precision, we used a divide-and-conquer paradigm.

The basic idea of a divide-and-conquer paradigm is to split

the large problem into two ormore smaller sub-problems. The

solution to the individual sub-problems can then be combined

to arrive at the solution to the larger problem.

We present a novel network architecture based on a divide-

and-conquer paradigm to predict the higher bit-depth images

without any substantial increase in the number of learnable

parameters. In order to reduce the number of parameters

required for higher bit-depth predication, we propose splitting

the n-bit integer number, Nn_bit , in to a linear combination of

two n/2-bit numbers as:

Nn_bit =
(

2n/2a0 + a1

)

; ∀a0, a1 ∈ [0, 2n/2 − 1] (11)

For instance, a 16-bit integer number can be represented as:

N16_bit = (256a0 + a1) ; ∀a0, a1 ∈ [0, 255] (12)

As described in equation (11), both a0 and a1 belong to a

n/2-bit number, therefore the network in Fig.4 can be modi-

fied to predict both a0 and a1, and equation (11) can be used to

compute the n-bit value Nn_bit . This approach does not result

in any significant increase in the number of parameters and

makes the proposed method practical for higher bit images.

For instance, in order to predict a 16-bit image using this

approach, the number of channels required in the output layer

is only 256 instead of 65536.

Figure 5 shows the network used to predict the 16-bit

precision pixel values using the proposed pixel classification

approach. It consists of two outputs a0 and a1, and the 16-bit

pixel value is calculated using equation [1].

IV. EXPERIMENTAL RESULTS

A. DATA PREPARATION, NETWORK TRAINING

AND VALIDATION

T1 and T2 weighted 3D volumetric images from the

IXI dataset ( https://brain-development.org/ixi-dataset/) were

used to train the DL models. For each contrast, T1 and T2,

we used 260 subjects for training the network and 64 sub-

jects for validation. The training images were generated by

undersampling the k-space data by a factor of 8 in two of the

encoding directions with a variable density undersampling

pattern. Since the data was 3D, it was possible to perform 2D

undersampling with a high acceleration factor of 8, (Accel-

eration factor = (total number of k-space points) / (number

of acquired k-space points)), while for 1D undersampling

at such an acceleration factor would result in images with

higher artifacts. All the 3D volume images were normalized

by dividing both the input and output by the maximum value

of the input volume, which scales the data between 0 and 1.

The Keras deep learning library with the Tensorflow backend,

was used for training the networks. The Adam optimizer was

used with initial learning rate = 0.0001, and the learning

rate was annealed by a factor of 0.96 for each epoch. One

epoch consisted of 2500 iterations. A total of 150 epochs were

used for training, and the model for which validation loss was

minimum was selected as the final trained model.

Four different methods of MR image reconstruction from

undersampled k-space data were compared: (i) a compressed

sensing reconstruction with a wavelet and total variation

(TV) penalty; (ii) a DL regression reconstruction with mean

squared loss; (iii) a DL regression reconstruction with mean

absolute loss; and (iii) a DL classification reconstruction

(16-bit precision).

Three validation experiments were designed to test the

performance of the DL models using the IXI datasets, the IXI

datasets with added noise, and the brain tumor cases from the

BRATS dataset [31]. Details are provided in Section IV-C.

B. IMAGE RECONSTRUCTION

For the CS reconstruction, the wavelet and the TV reg-

ularization parameters were empirically optimized to pro-

vide maximum SSIM. The regularization parameters for the

wavelet and TV penalties were 0.0001 and 0.0005, respec-

tively. A nonlinear conjugate gradient method was used for

the CS reconstruction. The last layer directly predicted the

pixel value for the DL regression network reconstruction. The

last layer predicted the probability of each pixel belonging

to one of the 256 different classes for the DL classification
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reconstruction, including susceptibility-weighted imaging

(SWI) and phase-contrast imaging, it is possible to use two

channels in the DL network - one for the real component

and another for the imaginary component or magnitude and

phase. The phase values range from to 0 to 2π , and using

an 8-bit DLC network the precision will be 2π
256

, while for

a 16-bit network, the precision will be 2π
65536

, resulting in

very high precision. Another issue with phase image recon-

struction is the background phase signal caused by B0 field

inhomogeneity. The background phase varies from scan to

scan and subject-to-subject; therefore, a background phase

correction method is likely needed in combination with the

DL framework.

One limitation of using a pixel classification network is

an exponential increase in the memory requirement as the

number of quantization bits are increased. If the required

large memory is available, the proposed method can be easily

extended to higher bit depth by increasing the number of

output channels in the DLC network. However, this may

result in overfitting due to the increased number of network

parameters. In order to circumvent this limitation, we pro-

posed a novel divide-and-conquer approach (section I-E) for

extending the classification network to predict higher bit

depth pixel values without any significant increase in the

number of network parameters. For a 16-bit classification

network, the number of parameters was only increased by

0.6% compared to an 8-bit network.

For prospective undersampling where the data is inherently

multi-channel, the undersampled data can be combined to

a single image which can be processed thorough the DL

network. However, training a separate network on a multi-

channel image as an input and a coil combined image as an

output would result in better performance.

We performed experiments on the effect of the sam-

pling pattern at the time of inference. The performance

of the network trained on an acceleration factor of 8

was degraded when the inference was performed on the

acceleration factor of 10. However, the effect on perfor-

mance was marginal for a fixed acceleration factor change

in the sampling pattern drawn from the same Gaussian

distribution.

Furthermore, using a non-uniform quantizer can further

improve the encoding efficiency of information during quan-

tization step and the performance of the DL network. The

framework introduced in this paper has the potential to lever-

age great advances in this area of research.

VI. CONCLUSION

A generic framework for transforming image reconstruc-

tion into pixel classification, which can be used with many

deep learning based image reconstruction methods is demon-

strated. The proposed method restores low contrast features

better than the other standard methods. The method is robust

to noise and can reconstruct high-contrast images in relatively

low signal to noise ratio scenarios.
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