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ABSTRACT A deep learning framework is presented that transforms the task of MR image reconstruction
from randomly undersampled k-space data into pixel classification. A DL network was trained to remove
incoherent undersampling artifacts from MR images. The underlying, fully sampled, target image was
represented as a discrete quantized image. The quantization step enables the design of a convolutional
neural network (CNN) that can classify each pixel in the input image to a discrete quantized level. The
reconstructed image quality of the proposed DL classification model was compared with conventional
compressed sensing (CS) and a DL regression model. The reconstructed images using the DL classification
model outperformed the state-of-the-art compressed sensing and DL regression models with a similar
number of parameters assessed using quantitative measures. The experiments reveal that the proposed deep
learning method is robust to noise and is able to reconstruct high-quality images in low SNR scenarios where
conventional CS reconstructions and DL regression networks perform poorly. A generic design framework
for transforming MR image reconstruction into pixel classification is developed. The proposed method can

be easily incorporated into other DL-based image reconstruction methods.

INDEX TERMS Magnetic resonance imaging, compressive sensing, deep learning.

I. INTRODUCTION

Accelerating data acquisition in magnetic resonance imaging
has been an active area of research since the inception of
MRI. Initial efforts were made to accelerate the data acqui-
sition process by developing fast imaging sequences, such
as echo planar imaging [2] and gradient echo sequences [3].
However, further acceleration of MR data acquisition using
these fast imaging sequences resulted in nerve stimulation
due to the rapid switching of the magnetic field gradients.
Multiple receive channels, which were initially intended to
improve the SNR of MRI, were later found to have more
valuable application in accelerating MR data acquisition.
Accelerated MR acquisitions use multiple receiver channels
with coils placed at spatially different locations around the
patient. The underlying MR signals are modulated as a result
of the respective coil sensitivities. Parallel imaging technig-
ues [4]-[8] exploit knowledge of the variable coil sensi-
tivities present in multichannel receiver coils to reconstruct
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MR images from accelerated, undersampled k-space data.
Compressed sensing (CS) [9], [10] is another technique
that exploits the signal sparsity inherent in MR images.
MR images are known to be sparse in a number of sig-
nal domains, including wavelet and total variation (TV).
Compressed sensing uses knowledge of this sparsity and
reconstructs the images from undersampled k-space data
using iterative reconstruction methods. In conventional
CS-MRI reconstruction, a universal sparsifying transform
is assumed (such as wavelet or TV) that transforms the
underlying image into a sparse representation. Given the
data consistency constraint, the iterative reconstruction algo-
rithm minimizes a cost function to recover this sparse
representation. CS-MRI reconstruction is a computationally-
intensive process and efforts have been made to develop
faster reconstruction methods [11]-[14] by optimizing the
algorithms or implementing them on graphics processing
units (GPU).

Deep learning [15], [16] is another rapidly growing area
finding utility in numerous imaging applications. Deep
learning, or more specifically convolutional neural networks
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(CNN) [15], have shown remarkable performance improve-
ments in a multitude of computer vision tasks, such as image
classification [1] and image segmentation [16]-[19]. Deep
learning methods have even surpassed human-level perfor-
mance in some image classification tasks [1]. Recently,
the application of deep learning to image reconstruction from
undersampled k-space MR data has been explored by a num-
ber of research groups [20]-[27]. In [21], a deep convolu-
tional neural network for solving an inverse problem was
presented with an emphasis on CT image reconstruction.
In [22], a deep learning method based on the Unet [18]
architecture was presented which learns the undersampling
artifact instead of the image to enable these artifacts to be
removed from the corrupted image. In [24], a method using
a cascade of CNN for image reconstruction from undersam-
pled data was presented, which is effectively an unrolling
of the iterative reconstruction process. In [28] a framework
based on convolutional framelets was presented, linking the
mathematical signal processing concepts to the deep learning
reconstructions. In [27], a method of reconstruction that maps
the undersampled k-space to image space was presented.
However, this method required a large amount of internal
memory and implementation of the method was only demon-
strated for small image sizes of 128 x 128. For larger image
sizes, such as 256 x 256 or 512 x 512, the implementation
poses significant technical challenges. These deep learning
methods are motivated by the fact that iterative reconstruction
can be converted to non-iterative CNN inferences.

Recent advances in deep learning are being driven by
computer vision research in which the image processing
task is usually a classification and/or segmentation task.
The output of a deep learning network for an image clas-
sification/segmentation task is a probability estimate of the
object belonging to a certain class. However, the task of
image reconstruction is significantly different from a classi-
fication/segmentation task. In image reconstruction, the DL
network is trained to learn a nonlinear mapping between
the input (images reconstructed from undersampled k-space
data) and the output (images reconstructed from fully sam-
pled k-space data). DL networks for image reconstruction
are regression networks, whereas DL networks for classifi-
cation/segmentation are classification networks.

The data acquired during MR data acquisition and
reconstructions are represented in floating-point numbers.
However, at the end of the imaging process, the images are
stored and viewed in a dicom format. In the dicom format,
images are quantized and consist of a fixed number of grey
levels determined by the number of bits used to store the
image (usually 12 to 16 bits). Motivated by the fact that MR
images are finally stored as quantized images in this work,
we present a method to directly reconstruct the quantized
images by transforming the task of image reconstruction into
a pixel classification task. Image reconstructions from a deep
learning classification network were compared with image
reconstructions from compressed sensing and a deep learning
regression network. We investigated the effect of noise on
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the image reconstruction and quantitatively compared the
resultant images for low signal to noise acquisitions. The
following are the major contributions of this paper:

¢ A novel DL framework is introduced to model the
image reconstruction problem into a pixel classification
problem.

« A divide-and-conquer approach is developed for appli-
cation of the DL classification network to high-bit pre-
cision (i.e. 16 bit).

« The pixel classification approach with compressed sens-
ing and the conventional DL regression approach are
validated using three experiments which include T1 and
T2 weighted MR images, T1 and T2 images with added
noise, and an unseen tumor dataset.

Il. BACKGROUND

A. ITERATIVE RECONSTRUCTION - COMPRESSED
SENSING MRI

The pulse sequence in MRI encodes the NMR signal into the
Fourier space using magnetic field gradients. The acquired
signal in k-space is a Fourier transform of the image. The data
acquisition can be represented as

y = Fx,

where y € CV*V is the acquired k-space data, x € CV*V is
the N x N image and F € CV>*V is a 2D Fourier transform
operator. For Cartesian CS acquisition, the acquired k-space
data is undersampled along the phase encoding (PE) direction
for 1D undersampling and in both the PE and slice encode
(SE) direction for 2D undersampling. The undersampled data

can be represented as:
yu=U O (Fx), €))

where © is an elementwise matrix product and U is an under-
sampling matrix of size N x N, with a value of 1 at the
locations where the k-space is sampled and 0O elsewhere.

Consider an image x that can be sparsely represented in the
domain ¥, i.e x; = ¥x is sparse. The acquired undersampled
data (y,), in terms of a sparse representation of the underlying
image can be written as

yu=U O Fy ), 2)

where 1~ is the inverse of /.

The CS reconstruction minimizes a cost function to recon-
struct an estimate of the fully sampled image & = v~ from
undersampled k-space data y,, given by

2
yu—UOFY 5 ) A3)

min [, + |
Xs

where ||-||; and |||, are /; and l; norms, respectively. The
first term in the cost function enforces sparsity, whereas
the second term enforces the consistency of the estimated
X with the acquired data, y,. The regularization parameter
A determines the level of sparsity and is usually determined
empirically, depending on the noise level in the acquired data.
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B. CONVOLUTIONAL NEURAL NETWORK (CNN)
RECONSTRUCTION

In this section, we briefly describe the convolutional neu-
ral network architecture. The topic of CNN is broad and
this section only covers the fundamental principles required
for CNN image reconstruction. The basic principle of a
CNN [15] is a set of convolution operations followed by the
addition of a scalar bias term which is then followed by a
nonlinear squashing function. In a typical CNN architecture,
the input is first convolved with a 2D kernel (width x height)
of a specified size across all the different channels. A bias
is added to the convolution output and this output is passed
through a nonlinear activation function, typically a rectilinear
unit (ReLU). The operations of convolution and nonlinear
activation represent a layer of the CNN architecture. There
are a large number of different kernels in each layer of a
CNN, with the output of the layers being called feature maps.
A CNN architecture for an MR image reconstruction consists
of many such layers, with the weights of the convolutional
kernels learned from a set of training data (consisting of
images from fully sampled and undersampled k-space data)
using the backpropagation algorithm.

lll. PROPOSED METHOD

A. TRANSFORMING IMAGE RECONSTRUCTION INTO
PIXEL CLASSIFICATION

The problem of image reconstruction from undersampled
data using deep learning has been demonstrated in [20]-[22],
[241], [26], [27]. In the demonstrated methods, the CNN archi-
tectures were modeled as a regression model, which learns
a nonlinear relationship between an image from undersam-
pled k-space data and an image from fully sampled k-space
data.

In this work, we propose a DL method to convert the prob-
lem of image reconstruction from undersampled data into a
pixel classification problem. In order to convert the image
reconstruction problem into pixel classification, the target
image is first quantized to a finite n-bit discrete grey-level
image (Figure 1 (c¢)). The quantization step results in 2"
unique pixel intensity values. The discretization of the tar-
get image makes it possible to design a classification CNN
architecture that can classify each pixel in the image from
undersampled k-space data to one of the 2" discrete grey lev-
els. The classification CNN predicts the probability of each
pixel belonging to one of the different 2" classes. The training
of the classification network requires the categorical loss in
the backpropagation step and the model learns a nonlinear
classification model between pixels in the input image (image
with undersampling artifact) and the output image (image
without artifact).

Deep learning based MR image reconstruction methods
use the process of training to fit a nonlinear model by relating
an image with undersampling artifact to an image without the
artifact.

% =Gy (F*y,) 4)
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Quantization to n-bit

(c) Target for
Classification Network
(Quantized
Representation, 2" grey
levels)

(b) Target for
Regression Network
(Floating Point
Representation)

FIGURE 1. The Fundamental principle for transforming image
reconstruction into a pixel classification problem. (a): MR image with
undersampling artifacts; (b): Target image for regression network
represented in 32-bit floating; (c): Target image for classification network
represented in an unsigned 8-bit integer.

where, x is an estimate of a fully sampled image, y, is under-
sampled k-space data, F'* is a 2D inverse Fourier transform
operator and Gy is a DL nonlinear model parameterized
by 6 and generated through the process of training. Gy is
an L-layer configuration determined by the architecture of
DL-CNN.

Conventionally, the regression DL architectures are used
for MR image reconstruction [21], [22], [24], [27] as this
minimizes reconstructed image loss such as mean squared
error or mean absolute error using training datasets. The mean
absolute error for the regression network is defined as

min £ (0) = Hx —GR(F*y,) (5)

;

In the above equation, Gg is aregression DL model, termed
DL-R in this paper, and x is the ground truth image from fully
sampled k-space data. The loss function aims to minimize the
total /; error of the reconstructed image. Conventional DL-R
image reconstruction models show reduced reconstruction
error compared with CS reconstruction. However, residual
noise and image blurring are still present in the reconstructed
images.

Instead of directly reconstructing an image x, we propose
using the classification DL network for MR image recon-
struction, termed DL-C in this paper. The DL-C networks
predict the probability of each pixel belonging to the dis-
cretized intensity level, ¢ € [0, M — 1], and M represents
the total number of classes. The total number of classes is
determined by the bit depth used for quantization (M = 2").
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FIGURE 2. A typical predicted probability distribution from the
classification network for a given pixel. The x-axis represents quantized
pixel intensities and the y-axis represents the predicted probability. The
uncertainty is defined as the distance from the mean values at 95%
confidence.

The probability of an output pixel, P, falling into the intensity
level, c, is given by

p(c) =G5 (F*y,), ©)

where Gg is the classification DL model. Since the regression
problem of image reconstruction is transformed into a pixel
classification problem, the loss function to be minimized
must be from a categorical loss function. Hence, in this work,
we minimized the categorical cross entropy defined as
M—1
min £ (0) =~ Y pr (©)log (pp (©)). @)
c=0
where, p;(c) is the true probability for the class ¢, obtained
from training datasets and p, (¢) is the predicted probability
for the class ¢ for the model Gg. The categorical cross entropy
is a probabilistic loss function and is independent of the
individual pixel value. This loss function penalizes all the
pixels equally, irrespective of the pixels’ values, and the loss
only depends on the predicted probability distribution of the
pixel.

The adjacent classes or labels (i.e pixel intensities) in the
image reconstruction task results in the predicted probability
pp(c) distribution being nearly symmetrical and Gaussian-
like in nature (Figure 2). The approach is more robust at the
sharp edges and for noise with zero means. This is because the
presence of tissue boundaries or zero-meaned noise, p,(c),
can be expected to have wider distributions while the mean
remains largely undisturbed. In other words, the presence of
tissue boundaries or noise results in an increase in the uncer-
tainty (Figure 2), but the mean largely remains the same and
hence the pixel intensity can be recovered more accurately.

B. Quantization

The quantization [29]-[32] is a step to discretize the signal
from a large number of values to a smaller fixed number of
values. A signal can be quantized using a uniform or non-
uniform discretization process. In this work, we employed a
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8-bit integer (U8)

single precision (F32)

Quantization
(loss of precision)

rescale
between [0 1]

Err = 0.002
ssim = 0.9994

quantization error (100x)

single precision (F32)

FIGURE 3. Analysis of the quantization error; (a): 32-bit single-precision
floating-point image scaled between [0,1]; (b): an unsigned 8-bit integer
representation of the image generated from (a), this step introduces
quantization error due to fixed point conversion; (c): image (b) converted
to single-precision floating-point by scaling (dividing each pixel by 255);
(d): quantization error image (scaled by 100x for viewing) generated by
subtracting the original image (a) and the quantized version (c). Relative
error due to quantization is 0.002 and the structural similarity index
between images (a) and (c) is 0.9994.

uniform quantization approach to convert the floating-point
representation of an image Ij,4, scaled in the range [0, 1],
to a fixed-point representation. The uniform quantization to
n-bits can be performed using

Ifixed = & [(2n - 1) lhoar + 0.5], (3

where g [-] is the ceiling function and Ifes is an n-bit fixed
point representation of the image.

The quantization step introduces an error into the image,
and the information lost due to quantization cannot be recov-
ered. Therefore, theoretically, the quantization error is the
minimum error that is always present in the reconstructed
image using the DL classification framework. The quanti-
zation error in all of the MR images is empirically quan-
tified by discretizing the floating-point representation to an
8-bit unsigned representation. An example of the quantiza-
tion process is demonstrated for an MR image in Figure 3.
The initial ground truth image is scaled between [0, 1] and
represented in a single precision floating point (Figure 3 (a),
Ifioa:). The image is quantized to an 8-bit fixed point unsigned
integer number [0, 255] (Figure 3 (b), Ifixeq)- The quantization
step introduces errors in the image, and the quantized image
(fixed point) is again converted to a single precision float-
ing point number and scaled between [0, 1] (Figure 3 (c),
fﬂom). Although the quantized image is now represented as
a floating point, it only consists of 256 different intensity
levels. Figure 3 (d) shows the absolute error introduced due
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FIGURE 4. The Network Architecture: Residual Encoder-Decoder convolution neural network architecture for image reconstruction. The input to the
network is a 256 x 256 image with undersampling artifact. The numbers at the top of the filters show the size of the data and the numbers at the
bottom show the number of filtered outputs. In the case of the classification model, the last layer is a 256-feature layer that predicts the probability of
quantized image intensity level for each pixel in the reconstructed image. In the case of the regression model, the last layer is a single feature layer
that predicts the floating-point value of each pixel in the reconstructed image. The figure represents the architecture for both the regression network
and the classification network - as differentiated by the dashed arrow. Only one of the dashed arrow layers was included to form either a
classification or a regression network. Only the top (MAE Loss) layer was included for the regression network, while only the bottom (cross-entropy

loss) layer was included for the classification network.

to the process of quantization - here the relative error was
0.002 or 0.2%. This example demonstrates that the error
introduced due to quantization is small and does not affect
the visual appearance of the image. Theoretically, the quan-
tization error [33] for n-bit quantization can vary from —
LSB/2 to + LSB/2 (LSB: least significant bit). The LSB for
8-bit quantization is 1/2%, therefore the maximum error per
pixel can be £1/2° = 40.002 or +0.2 %.

C. DEEP LEARNING NETWORK ARCHITECTURE

An encoder-decoder Unet [18], [28] architecture (Figure 4)
with skip connection was designed and trained to predict
an estimated probability distribution for each pixel intensity
in the artifact-free image from the image with the under-
sampling artifacts. The encoder network consists of a series
of convolution and pooling layers, with three convolutions
before every pooling operation. The decoder consists of a
series of convolution and up-sampling layers, with three con-
volutions before every up-sampling operation. The decoder
network consists of dropout layers after every convolution,
with a dropout fraction of 0.2. The base architecture for both
the regression and classification models remains the same
except for the last layer and the loss function.

For the regression network, the last layer uses the mean
absolute error as the loss function to predict a target out-
put image. The loss function computes the mean absolute
error between the output and the target image (artifact-free
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floating-point image). The input to the network is a 256 x
256 image from the undersampled data and the output is an
estimate of the image from fully sampled data.

For the classification network, the last layer consists of
the softmax activation and cross entropy as a loss function.
The loss function computes the categorical cross-entropy loss
between the output probabilities of the network and the target
probabilities. The target probabilities are determined by the
pixel intensity in the quantized image, i.e. the probability of
the class corresponding to the pixel intensity will be one. The
input to the network is a 256 x 256 undersampled floating-
point image and the output is the class probabilities for the
pixels. The class index of the maximum predicted probability
can be assigned as the value of the given pixel. The resulting
quantized image is transformed to a floating-point number
and scaled between [0,1]. Although the final output image
from the DL classification network is represented in floating-
point, the number of grey levels is discrete and is determined
by the bit-depth used for the initial quantization.

D. IMAGE RECONSTRUCTION FROM

PREDICTED PROBABILITY

The proposed DL classification method outputs a probability
distribution for each pixel instead of the exact pixel value
(Figure 2). In this work, we use two reconstruction methods:
a) DL-C Max and b) DL-C Avg. In DL-C Max, we employed
a simple method of image reconstruction to assign the class
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index of the maximum probability as the value to the given
pixel at spatial location r. This results in an image with M =
2" discrete values, determined as:

I(r) =arg max op (c,r). ©)]

The DL-C Avg takes the weighted sum of the probability
distribution, determined as:

M—-1
()= c-ppler), (10)
c=0

where I (r) is the reconstructed image and pp(c, r) is the
probability distribution predicted by the DL classification
network at spatial location r in the image for M = 2"
classes, where n is the number of bits used for quantization.
The weighted sum approximates continuous values between
[0, M — 1] instead of discrete M values, and thus minimizes
the error due to quantization.

E. DIVIDE-AND-CONQUER APPROACH FOR HIGHER BIT
PRECISION PIXEL CLASSIFICATION

The memory requirement for the network architecture in
section-III-C increases exponentially with the bit-depth.
The dynamic range of an n-bit unsigned number N, p;; is
[0,2" — 1]. In order to predict the probability of each pos-
sible pixel intensity using the proposed pixel classification,
the approach requires 2" channels at the output of the net-
work. The number of channels can be extremely large, for
instance for a 16 bit-depth it is 65536. The large number
of channels may not be practical due to physical memory
limitation and the model may not generalize due to overfitting
from an increased number of parameters.

In order to make the classification network practical for
higher bit precision, we used a divide-and-conquer paradigm.
The basic idea of a divide-and-conquer paradigm is to split
the large problem into two or more smaller sub-problems. The
solution to the individual sub-problems can then be combined
to arrive at the solution to the larger problem.

We present a novel network architecture based on a divide-
and-conquer paradigm to predict the higher bit-depth images
without any substantial increase in the number of learnable
parameters. In order to reduce the number of parameters
required for higher bit-depth predication, we propose splitting
the n-bit integer number, N,,_p;s, in to a linear combination of
two n/2-bit numbers as:

Nopin = (2"a0+ar); Vao, a1 €[0,2"2 1] (11)
For instance, a 16-bit integer number can be represented as:
Nie_pir = (256a0 +a1); Vao, ar € [0,255]  (12)

As described in equation (11), both ag and a; belong to a
n/2-bit number, therefore the network in Fig.4 can be modi-
fied to predict both ag and a1, and equation (11) can be used to
compute the n-bit value N,,_p;;. This approach does not result
in any significant increase in the number of parameters and
makes the proposed method practical for higher bit images.
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For instance, in order to predict a 16-bit image using this
approach, the number of channels required in the output layer
is only 256 instead of 65536.

Figure 5 shows the network used to predict the 16-bit
precision pixel values using the proposed pixel classification
approach. It consists of two outputs ag and a1, and the 16-bit
pixel value is calculated using equation [1].

IV. EXPERIMENTAL RESULTS

A. DATA PREPARATION, NETWORK TRAINING

AND VALIDATION

Tl and T2 weighted 3D volumetric images from the
IXTI dataset ( https://brain-development.org/ixi-dataset/) were
used to train the DL models. For each contrast, T1 and T2,
we used 260 subjects for training the network and 64 sub-
jects for validation. The training images were generated by
undersampling the k-space data by a factor of 8 in two of the
encoding directions with a variable density undersampling
pattern. Since the data was 3D, it was possible to perform 2D
undersampling with a high acceleration factor of 8, (Accel-
eration factor = (total number of k-space points) / (number
of acquired k-space points)), while for 1D undersampling
at such an acceleration factor would result in images with
higher artifacts. All the 3D volume images were normalized
by dividing both the input and output by the maximum value
of the input volume, which scales the data between 0 and 1.
The Keras deep learning library with the Tensorflow backend,
was used for training the networks. The Adam optimizer was
used with initial learning rate = 0.0001, and the learning
rate was annealed by a factor of 0.96 for each epoch. One
epoch consisted of 2500 iterations. A total of 150 epochs were
used for training, and the model for which validation loss was
minimum was selected as the final trained model.

Four different methods of MR image reconstruction from
undersampled k-space data were compared: (i) a compressed
sensing reconstruction with a wavelet and total variation
(TV) penalty; (ii) a DL regression reconstruction with mean
squared loss; (iii) a DL regression reconstruction with mean
absolute loss; and (iii) a DL classification reconstruction
(16-bit precision).

Three validation experiments were designed to test the
performance of the DL models using the IXI datasets, the IXI
datasets with added noise, and the brain tumor cases from the
BRATS dataset [31]. Details are provided in Section IV-C.

B. IMAGE RECONSTRUCTION

For the CS reconstruction, the wavelet and the TV reg-
ularization parameters were empirically optimized to pro-
vide maximum SSIM. The regularization parameters for the
wavelet and TV penalties were 0.0001 and 0.0005, respec-
tively. A nonlinear conjugate gradient method was used for
the CS reconstruction. The last layer directly predicted the
pixel value for the DL regression network reconstruction. The
last layer predicted the probability of each pixel belonging
to one of the 256 different classes for the DL classification
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FIGURE 5. The network architecture for 16-bit classification network. The output from the Unet consists of two outputs @, and a,. Both a; and a, are
256 channel outputs predicting the probability distribution of two 8-bit numbers. Both the probability distributions are used to compute the final value of

a pixel using equation 12.

network. The estimated values for coefficients ap and a; were
calculated using equation (10). Once the coefficients ap and
a1 were known, the final 16-bit images were calculated using
equation 12.

We further evaluated the performance of the three recon-
struction methods in the presence of noise. Random Gaus-
sian noise was added to the undersampled k-space data and
resulted in Rician distributed noise in the magnitude images.
The zero-filled noise corrupted MR images were provided as
input to the three reconstruction methods and the results were
compared. The hyperparameters for the CS reconstruction
were separately optimized for the noise case.

C. RESULTS
A total of five different reconstructions were compared for
the acceleration factor of §. These were ZF: zero-filled recon-
struction where missing k-space lines were simply filled
with zeros and the image is reconstructed with the Fourier
transform of k-space, CS: compressed sensing reconstruction
with TV and wavelet regularizations, DLR-L2: deep learning
regression reconstruction with the network trained with mean
squared loss, DLR-L1: deep learning regression reconstruc-
tion with the network trained with mean absolute loss and
DLC: deep learning classification reconstruction (16-bit).
Separate networks were trained for the T1 and T2 weighted
images. On visual inspection of Figure 6, the compressed
sensing image reconstructions shows a loss of resolution
and suffers from blurred edges (enlarged images sections
in Figure 6). The DLR-L2 reconstruction resulted in loss
of resolution and blurry edges, while the DLR-L1 image
reconstructions performed poorly in recovering low contrast
features in the reconstructed image. The low contrast features
were washed off by the DLR network. The small structure, as
pointed out by yellow arrow (Figure 6), shows that the delin-
eation of the white matter and gray matter is more prominent
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TABLE 1. Quantitative scores for T1 weighted images.

Methods SSIM  PSNR Relative MSE
Error

Compressed Sensing  0.9419  30.66 0.0555 8.583e-4

DLR-L2 0.9484 31.74 0.0491 6.690¢c-4

DLR-L1 0.9519 31.89 0.0482 6.465¢-4

DL Classification 0.9557 32.19 0.0466 6.034e-4

TABLE 2. Quantitative scores for T2 weighted images.

Methods SSIM PSNR Relative MSE
Error

Compressed 0.9587 31.26 0.0530 7.466¢-4

Sensing

DLR-L2 0.9659 32.71 0.0449 5.361e-4

DLR-L1 0.9678 3333 0.0418 4.664¢e-4

DL Classification 0.9723 33.46 0.0410 4.446¢e-4

in the DLC reconstructed images. The proposed DLC net-
work showed higher resolution, sharper edge images and was
able to faithfully recover low contrast features compared to
the other reconstructions methods. The superior performance
of the DLC network was also evident from the quantitative
score of structural similarity (SSIM) index, peak signal to
noise ratio (PSNR), relative error and mean squared error
(MSE) as demonstrated in Tables 1 and 2.

At low field strengths, the SNR is lower than the high field
strength. In order to test the performance of all three algo-
rithms in a low SNR scenario, we trained both the DLC and
DLR networks on the dataset with the addition of Gaussian
noise. The Gaussian noise was complex valued (both real and
imaginary parts drawn from Gaussian distribution) and was
added to the undersampled k-space data. The peak signal to
noise ratio after adding the noise was approximately 18.0 dB.
The presence of noise severely affected the performance of
the CS reconstruction and resulted in excessive blurring and
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FIGURE 6. Results of the image reconstructions for T1 and T2 weighted images using the zero filled (ZF), the compressed sensing (CS), the DL-regression
with L2 loss (DLR_L2), the DL-regression with L1 loss (DLR-L1) and the DL-classification (DLC) reconstructions (computed using equations (10, 11)). The
enlarged images from each panel demonstrate that the image contrast and edges are better preserved in the DL classification network images compared
to the CS and DL-regression reconstructed images. The small structure pointed out by yellow arrow shows that the delineation of the white mater and
gray matter is more prominent in the DLC reconstructed images. The edge preservation can also be appreciated from the error images (scaled by 4x).

patch like artifacts in the reconstructed images (Figure 7,
CS column). The DL regression network reconstructions per-
formed better than the CS reconstructions but suffered from
substantial loss of low contrast features in the presence of
noise in the reconstructed images (Figure 7, DLR-L2 and
DLR-L1). The DLC classification network performed sub-
stantially better than the other reconstruction methods, was
able to reconstruct images with sharper edges and effectively
removed the effect of noise in the reconstructed images. The
results shown in Tables 3 and 4 demonstrate the quantitative
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scores for the reconstructions in the presence of noise for
T1 and T2 weighted images, respectively.

The DLC network was least affected by the injection of
noise. For T1 weighted images, the SSIM decreased by 3.3 %
for DLC while for DLR-L1, DLR-L2 and CS it decreased by
4 %, 4.1 % and 5.1 %, respectively.

Figure 8 shows the images reconstructed at an acceleration
factor of 3 for 1D under sampling on the T1 weighted images
along with the associated SSIM indexes. The reconstructed
images (zoomed views) demonstrate that the image contrast
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FIGURE 7. Results of the image reconstructions for T1 and T2 weighted images in the presence of added Gaussian noise using the zero filled (ZF),

the Compressed Sensing (CS), the DL-regression with L2 loss (DLR_L2), the DL-regression with L1 loss (DLR-L1) and the DL-classification (DLC)
reconstructions (computed using equations (10, 11)). The enlarged images from each panel demonstrate that the image contrast and edges are better
preserved in the DL classification network images compared to the CS and DL-regression reconstructed images. The small structure pointed out by yellow
arrow shows that the delineation of the white mater and gray matter is more prominent in the DLC reconstructed images. The edge preservation can also
be appreciated from the error images (scaled by 4x).

and edges are better preserved in the DL classification net-
work images compared to the CS and DL-regression images.
The yellow arrow indicates the region of loss of contrast in
the DLR-L2 images.

Additionally, we compared the performance of DLC
network with ADMM-Net [34] for radial trajectory
(Figure 9 (e)). Both the DLC and ADMM-Net were trained
for acceleration factor of 5 (sampling ratio = 20%). The
ADMM-Net was trained in MATLAB using the code from
(https://github.com/yangyan92/Deep-ADMM-Net). Figure 9
shows images reconstructed for the acceleration factor of 5
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TABLE 3. Quantitative scores for T1 weighted images in the presence of
noise.

Methods SSIM PSNR Relative MSE
Error

Compressed 0.8909 28.02 0.0753 1.577¢-3

Sensing

DLR-L2 0.9077 28.76 0.0692 1.330e-3

DLR-L1 0.9120 28.83 0.0686 1.308¢-3

DL Classification 0.9227 30.14 0.0641 1.114¢-3

along with the SSIM index which was 0.9309 for ADMM-Net
and was 0.9529 for DLC. The image reconstructed using
DLC (Figure 9 (d)) was visually more pleasing and the
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FIGURE 8. Results of the image reconstructions for two axial sections of
T1 weighted MPRAGE for the acceleration factor of 3 using the zero filled
(ZF), the Compressed Sensing (CS), the DL-regression (DLR-L2) and the
DL-classification (DLC) reconstructions along with SSIM indexes. The
enlarged images from each panel demonstrate that the image contrast
and edges are better preserved in the DL classification network images
compared to the CS and DL-regression images.

TABLE 4. Quantitative scores for T2 weighted images in the presence of
noise.

Methods SSIM PSNR Relative MSE
Error

Compressed 0.9306 29.11 0.0679 1.224e-3

Sensing

DLR-L2 09590  31.66 0.0506 6.813e-4

DLR-L1 0.9561 30.84 0.0556 8.231e-4

DL Classification 09615  31.78 0.0499 6.338¢-4

small structures are visible clearly. In contrast, the image
reconstructed from the ADDM-Net (Figure 9 (c)) consisted of
patchy artefacts and small structures were not visible clearly.

The trained networks (noise-free trained) on the
T1 weighted images were further tested on the brain tumor
images with a BRATS segmentation dataset [31]. Both the
DLC and DLR-L1 networks were directly used on the brain
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FIGURE 9. Results of image reconstruction for an image with radial
sampling pattern for acceleration factor of five with ADMM-Net and
classification network DLC. (a): Zero filled image for acceleration factor of
five; (b) fully sampled reference image; (c) image reconstructed from
ADMM-Net; (d) image reconstructed from DLC. The bottom of the panel
(c-d) shows the SSIM index.

TABLE 5. Quantitative scores for brain tumor image.

Methods SSIM PSNR Relative MSE
Error

DLR-L1 0.9802 36.93 0.0270 2.026¢-4

DL Classification 09822  37.30 0.0258 1.862¢-4

tumor images without any further training or fine-tuning.
These networks have never seen the images with tumors.
For the acceleration factor of eight, it was observed that
the images (Figure 10) reconstructed with the DLC network
provide better contrast compared to the images reconstructed
with DLR-L1, which suffered from smoothening and contrast
wash. The edges of the tumor were better preserved in
the DLC reconstructions compared to the DLR-L1 recon-
struction, as seen in the error images in Figure 10 and the
quantitative results shown in Table 5.

‘We computed the inference time for both the regression and
the classification networks using a Nvidia Tesla V100 GPU.
The inference time for a single slice of 256 x 256 was
approximately 0.36 seconds for both the networks. We further
analyzed the probability distribution predicted by the DLC
network across different regions of the image. The predicted
probability distributions for two different pixels in a DL
classification reconstructed image are shown in Figure 10.
For the pixels falling in the region of relatively flat texture,
the confidence was high (Figure 11 (b)) and the probability
distribution was narrow. For the pixels in regions of high
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FIGURE 10. Results of image reconstruction for an image with brain
tumor for acceleration factor of eight with regression network trained
with L1 loss (DLR-L1) and classification network trained with cross
entropy loss (DLC). Ref: Fully sampled reference image; DLR-L1: image
reconstructed with regression network trained on L1 loss; DLC: image
reconstructed with classification network. The edges of the tumor were
preserved better in the DLC reconstructions compared to DLR-L1
reconstruction as seen in the error images.

variance in the image, which is near the sharp edges, the con-
fidence was comparatively low and the probability distribu-
tion was wide (Figure 11 (c)). As the probability distribution
was symmetrical, the widening of the probability distribution
does not result in a change in the mean value, and thus,
the network was able to recover more accurate intensities of
the pixels near the sharp edges. In contrast, the regression
network was not able to effectively differentiate between the
adjacent pixels at the edges, which resulted in blurring of the
edges.

V. SUMMARY AND DISCUSSION
In order to further improve the existing deep learning image
reconstruction methods, in this work, we have developed
a novel framework for transforming image reconstruction
into pixel classification. Conventionally, image quantization
occurs during digital image archiving (e.g. 16-bit DICOM
image storage). In this work, we introduce a framework
that directly reconstructs ‘“digital” images. The proposed
method can be used with a multitude of deep learning recon-
struction methods. The method was extensively tested on
T1 and T2 weighted images and compared with conven-
tional compressed sensing and DL regression network image
reconstructions. The images reconstructed from the proposed
method outperformed the images reconstructed from the
other methods, both qualitatively and quantitatively.

We have applied and validated the proposed method using
T1 and T2 weighted MR images, and with T1 tumour contrast
images. These anatomical images represent a high contrast
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FIGURE 11. (a): DL classification network reconstructed image; (b-c): the
predicted probability distribution by DL classification network at pixels
pointed out by the white arrow.

and a highly dynamic range in the family of MR images.
With the successful validation using these datasets, we can
reasonably expect that the proposed method will work well
with other contrasts and dynamic range, such as functional
MRI, perfusion and diffusion MRI.

The deep learning methods use the process of training to
find an underlying model relating the image with undersam-
pling artifacts and the image without undersampling artifacts.
The DL regression networks find an exact model relating the
artifact image to the clean image. However, in the proposed
DL classification network, we successfully applied the con-
cept of image segmentation to solve the image reconstruc-
tion regression problem. The application of a classification
approach to a regression problem turns out to be better at
preserving the low contrast features of the images, as evident
from the results in Figures 6-10. Notably, the classification
model performs very well when noise is present in the image
and was able to remove the artifacts from the noisy images
with undersampling, as evident from the results shown in
Figures 6 and 7.

The proposed approach is generic in nature and demon-
strates that many of the advances made in deep learning
classification problems can be integrated into MR image
reconstruction tasks. One example is the problem of class
imbalance during the training of a deep learning model. Class
imbalance is a well-studied problem in deep learning for
object detection. Class imbalance issue is also present in MR
images, as most of the background pixels are zero. Therefore,
class imbalance coping methods, such as focal loss [33], can
also be integrated with the proposed classification approach.

It is reasonable to expect the quantization step to per-
form well with a variety of image contrasts, including pro-
ton density. More advanced quantization algorithms, such
as non-uniform quantizer, can also be used in conjunction
with the DL-C network. Furthermore, for complex image
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reconstruction, including susceptibility-weighted imaging
(SWI) and phase-contrast imaging, it is possible to use two
channels in the DL network - one for the real component
and another for the imaginary component or magnitude and
phase. The phase values range from to 0 to 27, and using
an 8-bit DLC network the precision will be %, while for
a 16-bit network, the precision will be %, resulting in
very high precision. Another issue with phase image recon-
struction is the background phase signal caused by BO field
inhomogeneity. The background phase varies from scan to
scan and subject-to-subject; therefore, a background phase
correction method is likely needed in combination with the
DL framework.

One limitation of using a pixel classification network is
an exponential increase in the memory requirement as the
number of quantization bits are increased. If the required
large memory is available, the proposed method can be easily
extended to higher bit depth by increasing the number of
output channels in the DLC network. However, this may
result in overfitting due to the increased number of network
parameters. In order to circumvent this limitation, we pro-
posed a novel divide-and-conquer approach (section I-E) for
extending the classification network to predict higher bit
depth pixel values without any significant increase in the
number of network parameters. For a 16-bit classification
network, the number of parameters was only increased by
0.6% compared to an 8-bit network.

For prospective undersampling where the data is inherently
multi-channel, the undersampled data can be combined to
a single image which can be processed thorough the DL
network. However, training a separate network on a multi-
channel image as an input and a coil combined image as an
output would result in better performance.

We performed experiments on the effect of the sam-
pling pattern at the time of inference. The performance
of the network trained on an acceleration factor of 8
was degraded when the inference was performed on the
acceleration factor of 10. However, the effect on perfor-
mance was marginal for a fixed acceleration factor change
in the sampling pattern drawn from the same Gaussian
distribution.

Furthermore, using a non-uniform quantizer can further
improve the encoding efficiency of information during quan-
tization step and the performance of the DL network. The
framework introduced in this paper has the potential to lever-
age great advances in this area of research.

VI. CONCLUSION

A generic framework for transforming image reconstruc-
tion into pixel classification, which can be used with many
deep learning based image reconstruction methods is demon-
strated. The proposed method restores low contrast features
better than the other standard methods. The method is robust
to noise and can reconstruct high-contrast images in relatively
low signal to noise ratio scenarios.
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