000868449 001__ 868449
000868449 005__ 20210130004221.0
000868449 0247_ $$2Handle$$a2128/23896
000868449 037__ $$aFZJ-2020-00041
000868449 041__ $$aEnglish
000868449 1001_ $$0P:(DE-Juel1)144879$$aPostma, Johannes Auke$$b0$$eCorresponding author
000868449 245__ $$aCH02 - Advances in root architectural modeling during the last decade
000868449 260__ $$aUK$$bBurleigh Dodds Science Publishing$$c2020
000868449 29510 $$aUnderstanding and improving crop root function
000868449 300__ $$a34
000868449 3367_ $$2ORCID$$aBOOK_CHAPTER
000868449 3367_ $$07$$2EndNote$$aBook Section
000868449 3367_ $$2DRIVER$$abookPart
000868449 3367_ $$2BibTeX$$aINBOOK
000868449 3367_ $$2DataCite$$aOutput Types/Book chapter
000868449 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$bcontb$$mcontb$$s1579178240_23008
000868449 4900_ $$aAdvances in modelling plant root systems
000868449 520__ $$aRoot architectural models (RSA) have become important tools in root research and plantphenotyping for studying root traits, processes, and interactions with the environment. Themodels have been used to simulate how various root traits and processes influence waterand nutrient uptake. At a more technical level, they have been used to develop phenotypingtechnology, particularly for testing algorithms for segmenting roots. To compute thesequantitative estimates regarding plant nutrition and root functioning, much developmentoccurred in the last decade increasing the complexity of the models. In this chapter, wedescribe first the application of the models to questions in plant biology, breeding, andagronomy, and second the development of the models. We end with a small outlooksuggesting that models need benchmarking and validation and that new developments arelikely to include better descriptions of root plasticity responses and focus on biologicalinteractions among (soil) organisms, including mycorrhizal fungi.
000868449 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000868449 7001_ $$0P:(DE-HGF)0$$aBlack, K.$$b1
000868449 8564_ $$uhttps://juser.fz-juelich.de/record/868449/files/preprint%28accepted%20text%29.pdf$$yOpenAccess
000868449 8564_ $$uhttps://juser.fz-juelich.de/record/868449/files/preprint%28accepted%20text%29.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000868449 909CO $$ooai:juser.fz-juelich.de:868449$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000868449 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144879$$aForschungszentrum Jülich$$b0$$kFZJ
000868449 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000868449 9141_ $$y2020
000868449 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000868449 920__ $$lyes
000868449 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000868449 980__ $$acontb
000868449 980__ $$aVDB
000868449 980__ $$aUNRESTRICTED
000868449 980__ $$aI:(DE-Juel1)IBG-2-20101118
000868449 9801_ $$aFullTexts