001     8698
005     20200402205809.0
024 7 _ |2 pmid
|a pmid:20090755
024 7 _ |2 pmc
|a pmc:PMC2834796
024 7 _ |2 DOI
|a 10.1038/nature08701
024 7 _ |2 WOS
|a WOS:000273748100049
024 7 _ |a altmetric:519603
|2 altmetric
037 _ _ |a PreJuSER-8698
041 _ _ |a eng
082 _ _ |a 070
084 _ _ |2 WoS
|a Multidisciplinary Sciences
100 1 _ |a Zhang, J.
|b 0
|0 P:(DE-HGF)0
245 _ _ |a Mechanism of folding chamber closure in a group II chaperonin
260 _ _ |a London [u.a.]
|b Nature Publising Group
|c 2010
300 _ _ |a 379 - 383
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Nature
|x 0028-0836
|0 4484
|v 463
500 _ _ |a We acknowledge the support of grants from the National Institutes of Health through the Nanomedicine Development Center Roadmap Initiative, Biomedical Technology Research Center for Structural Biology in National Center for Research Resources, Nanobiology Training Fellowship administered by the Keck Center of the Gulf Coast Consortia and the National Science Foundation.
520 _ _ |a Group II chaperonins are essential mediators of cellular protein folding in eukaryotes and archaea. These oligomeric protein machines, approximately 1 megadalton, consist of two back-to-back rings encompassing a central cavity that accommodates polypeptide substrates. Chaperonin-mediated protein folding is critically dependent on the closure of a built-in lid, which is triggered by ATP hydrolysis. The structural rearrangements and molecular events leading to lid closure are still unknown. Here we report four single particle cryo-electron microscopy (cryo-EM) structures of Mm-cpn, an archaeal group II chaperonin, in the nucleotide-free (open) and nucleotide-induced (closed) states. The 4.3 A resolution of the closed conformation allowed building of the first ever atomic model directly from the single particle cryo-EM density map, in which we were able to visualize the nucleotide and more than 70% of the side chains. The model of the open conformation was obtained by using the deformable elastic network modelling with the 8 A resolution open-state cryo-EM density restraints. Together, the open and closed structures show how local conformational changes triggered by ATP hydrolysis lead to an alteration of intersubunit contacts within and across the rings, ultimately causing a rocking motion that closes the ring. Our analyses show that there is an intricate and unforeseen set of interactions controlling allosteric communication and inter-ring signalling, driving the conformational cycle of group II chaperonins. Beyond this, we anticipate that our methodology of combining single particle cryo-EM and computational modelling will become a powerful tool in the determination of atomic details involved in the dynamic processes of macromolecular machines in solution.
536 _ _ |a Funktion und Dysfunktion des Nervensystems
|c P33
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK409
|x 0
536 _ _ |a BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung
|c P45
|0 G:(DE-Juel1)FUEK505
|x 1
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Adenosine Triphosphate: chemistry
650 _ 2 |2 MeSH
|a Adenosine Triphosphate: metabolism
650 _ 2 |2 MeSH
|a Adenosine Triphosphate: pharmacology
650 _ 2 |2 MeSH
|a Allosteric Regulation
650 _ 2 |2 MeSH
|a Binding Sites
650 _ 2 |2 MeSH
|a Cryoelectron Microscopy
650 _ 2 |2 MeSH
|a Group II Chaperonins: chemistry
650 _ 2 |2 MeSH
|a Group II Chaperonins: metabolism
650 _ 2 |2 MeSH
|a Group II Chaperonins: ultrastructure
650 _ 2 |2 MeSH
|a Hydrolysis: drug effects
650 _ 2 |2 MeSH
|a Methanococcus: chemistry
650 _ 2 |2 MeSH
|a Models, Molecular
650 _ 2 |2 MeSH
|a Protein Binding
650 _ 2 |2 MeSH
|a Protein Conformation: drug effects
650 _ 2 |2 MeSH
|a Protein Folding
650 _ 2 |2 MeSH
|a Protein Subunits: chemistry
650 _ 2 |2 MeSH
|a Protein Subunits: metabolism
650 _ 2 |2 MeSH
|a Structure-Activity Relationship
650 _ 7 |0 0
|2 NLM Chemicals
|a Protein Subunits
650 _ 7 |0 56-65-5
|2 NLM Chemicals
|a Adenosine Triphosphate
650 _ 7 |0 EC 3.6.1.-
|2 NLM Chemicals
|a Group II Chaperonins
650 _ 7 |a J
|2 WoSType
700 1 _ |a Baker, M.L.
|b 1
|0 P:(DE-HGF)0
700 1 _ |a Schröder, G.F.
|b 2
|u FZJ
|0 P:(DE-Juel1)132018
700 1 _ |a Douglas, N.R.
|b 3
|0 P:(DE-HGF)0
700 1 _ |a Reissmann, S.
|b 4
|0 P:(DE-HGF)0
700 1 _ |a Jakana, J.
|b 5
|0 P:(DE-HGF)0
700 1 _ |a Dougherty, M.
|b 6
|0 P:(DE-HGF)0
700 1 _ |a Fu, C.J.
|b 7
|0 P:(DE-HGF)0
700 1 _ |a Levitt, M.
|b 8
|0 P:(DE-HGF)0
700 1 _ |a Ludtke, S.J.
|b 9
|0 P:(DE-HGF)0
700 1 _ |a Frydman, J.
|b 10
|0 P:(DE-HGF)0
700 1 _ |a Chiu, W.
|b 11
|0 P:(DE-HGF)0
773 _ _ |a 10.1038/nature08701
|g Vol. 463, p. 379 - 383
|p 379 - 383
|q 463<379 - 383
|0 PERI:(DE-600)1413423-8
|t Nature
|v 463
|y 2010
|x 0028-0836
856 7 _ |2 Pubmed Central
|u http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2834796
909 C O |o oai:juser.fz-juelich.de:8698
|p VDB
913 1 _ |k P33
|v Funktion und Dysfunktion des Nervensystems
|l Funktion und Dysfunktion des Nervensystems
|b Gesundheit
|0 G:(DE-Juel1)FUEK409
|x 0
913 1 _ |k P45
|v BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung
|l Biologische Informationsverarbeitung
|b Schlüsseltechnologien
|0 G:(DE-Juel1)FUEK505
|x 1
913 2 _ |a DE-HGF
|b Key Technologies
|l BioSoft Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-551
|2 G:(DE-HGF)POF3-500
|v Functional Macromolecules and Complexes
|x 0
914 1 _ |y 2010
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k ISB-3
|l Strukturbiochemie
|d 31.12.2010
|g ISB
|0 I:(DE-Juel1)VDB942
|x 0
970 _ _ |a VDB:(DE-Juel1)117765
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)ICS-6-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-7-20200312
981 _ _ |a I:(DE-Juel1)ICS-6-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21