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Abstract. - By means of sophisticated Monte Carlo methods, we investigate the conformational
phase diagram of a simple model for flexible polymers with explicit thickness.
constraint, which is introduced geometrically via the global radius of curvature of a polymer
conformation, accounts for the excluded volume of the polymer and induces cooperative effects
supporting the formation of secondary structures. In our detailed analysis of the temperature
and thickness dependence of the conformational behavior for classes of short tubelike polymers,
we find that known secondary-structure segments like helices and turns, but also ringlike con-
formations and stiff rods are dominant intrinsic topologies governing the phase behavior of such
cooperative tubelike objects. This shows that the thickness constraint is indeed a fundamental
physical parameter that allows for a classification of generic polymer structures.

The thickness

Introduction. — Resolving structural properties of
single molecules is a fundamental issue as molecular
functionality strongly depends on the capability of the
molecules to form stable conformations. Experimentally,
the identification of substructures is typically performed,

>< for example, by means of single-molecule microscopy, X-

—

ray analyses of polymer crystals, or NMR for polymers in
solution. With these methods, structural details of specific
molecules are identified, but these can frequently not be
generalized systematically with respect to characteristic
features being equally relevant for different polymers.
Therefore, the identification of generic conformational
properties of polymer classes is highly desirable. The to-
date most promising approach to attack this problem is to
analyze polymer conformations by means of comparative
computer simulations of polymer models on mesoscopic
scales, i.e., by introducing relevant cooperative degrees of
freedom and additional constraints. In a typical model-
ing approach of this kind, the linear polymer is considered
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as a chain of beads and springs, where the monomeric
properties, e.g., caused by the side chain, are accumu-
lated in an effective, specifically parametrized single inter-
action point of dimension zero (“united atom approach”).
The linear extension of the chain is accounted for by in-
troducing springs or stiff bonds to mimic covalent bonds
in an effective way. Noncovalent van der Waals interac-
tions between pairs of monomers are typically modeled by
Lennard-Jones (LJ) potentials. In such models, only the
repulsive short-range part of the LJ potentials keeps pairs
of monomers apart. Such models have proven to be quite
useful in identifying universal aspects of global structure
formation processes. Examples include the characteriza-
tion of folding channels known from natural proteins [1]
and coupled binding-folding aggregation phenomena [2],
but are by no means limited to this specific sort of poly-
mers.

For the identification of underlying secondary struc-
ture segments like helices, strands, and turns as ground
states, however, the modeling of volume exclusion by
means of pure LJ pair potentials is not sufficient to form
clearly distinct secondary structures enabling a classifica-
tion scheme. Segments of such secondary structures were
found, e.g., in dynamical LJ polymer studies of transient
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states occurring in the collapse process [3] or as ground
states in models with stiffness [4], explicit hydrogen bond-
ing [5, 6], or explicit solvent particles [7,8]. It could
also be shown that helical structures form by introduc-
ing anisotropic monomer—monomer potentials in conjunc-
tion with a wormlike backbone model [9] or by combining
excluded volume and torsional interactions [10].

The formation of secondary structures requires coop-
erative behavior of adjacent monomers, i.e., in addition
to pairwise repulsion, information about the relative po-
sition of the monomers to each other in the chain is nec-
essary to effectively model the competition between non-
covalent monomeric attraction and short-range repulsion
due to volume exclusion effects [11]. The simplest way to
achieve this in a general, mesoscopic model is to introduce
a hard single-parameter thickness constraint and, thus, to
consider a polymer chain rather as a three-dimensional
tubelike object than as a one-dimensional, linelike string
of monomers [12,13]. Note that this approach differs sig-
nificantly from frequently studied cylindrical tube mod-
els [14], where the tube thickness only mimics volume ex-
clusion but not cooperativity such that explicit modeling
of hydrogen bonds is required to generate secondary struc-
tures.

Model and Methods. — In this Letter, we analyze
the general thermodynamic (pseudo)phase diagram of sec-
ondary polymer structures in dependence of the thickness
constraint. The thickness will, therefore, be considered as
coupling parameter that separates the different conforma-
tional phases polymers generally can reside in. A natural
choice for parametrizing the thickness of a polymer con-
formation with N monomers, X = (x1,...,Xy), is the
global radius of curvature rg. [15]. It is defined as the ra-
dius 7. of the smallest circle connecting any three different
monomer positions x;, x;, X (3,j,k=1,...,N):

rec(X) = min{rc(x;,x;,xx) Vi, 7,k |1 # j # k}. (1)

Denoting the distance between two points by 7;; = |x;—x;]|
and the area of the triangle spanned by any three points
by Aa(Xi,X;,Xk), Tc IS given as
TijTjkTik
re = ——7i-—"".
AAA (X4, X, Xp;)

(2)

With these definitions, the polymer tube X has the “thick-
ness” (or diameter) d(X) = 2rg(X) which is illustrated
in an intuitive way in Refs. [15,16].

We here consider linear, flexible polymers with stiff
bonds of unit length (r;;11 = 1). The pairwise interac-
tions among nonbonded monomers are modeled by a stan-
dard LJ potential and thus the energy of a conformation

X reads
EX)= > Vu(ry). (3)
i,j>i+1
where Vij(rij) = 4¢[(o/rij)'* — (0/7:;)%]. By setting o =
1, Viy(r;j) vanishes for r;; = 1 and is minimal at Tf‘;i“ =
21/6 ~1.122.

Since we are interested in classifying conformational
pseudophases of polymers with respect to their thick-
ness, we introduce the restricted conformational space
R, = {X|rg(X) > p} of all conformations X with
a global radius of curvature larger than a thickness con-
straint p, which can be understood as an effective measure
for the extension of the polymer side chain. Given p, ob-
viously only conformations with rg. > p can occur.

The canonical partition function of the restricted con-
formational space thus reads

Z,= [ DX O(rye(X) = p)e BT, ()
where kg7 is the thermal energy (we use units in which
e = kg = 1 in the following) and O(z) is the Heaviside
function. In this thickness-restricted space, canonical sta-
tistical averages of any quantity O are then calculated via
(0), = Z; [ DX O(X)O(rge(X) — p) exp[— E(X) /kp T

To characterize the phase diagram, we have first per-
formed exhaustive energy-landscape paving (ELP) opti-
mizations [17] in order to identify lowest-energy confor-
mations as reference states of flexible polymers under
the constraint of a given minimal global radius of curva-
ture p. Next, we have analyzed the interplay of structural
and thermal properties of polymers with N = 8,...,13
monomers for a very large number of p values. It should
be emphasized that our detailed thermodynamic analysis
aiming at the entire structural phase diagram requires pre-
cise datasets that can only be obtained by means of sophis-
ticated generalized-ensemble methods. We have employed
parallel tempering [18], multicanonical sampling [19], and
the Wang-Landau method [20], and compared the results.
In the following, we shall focus on the tube polymer with
N = 9 monomers as most of the observed features of
this 9mer are generic and thus also common to the longer
chains.

Results and Discussion. — Figure 1 shows the
ground-state energy per monomer as a function of p (with
bin sizes Ap < 0.01 in the most interesting region). Also
shown are lowest-energy conformations for exemplified val-
ues of p. The ground-state energy per monomer for the
linelike 9mer (i.e., p = 0) is in our units Fyi, /N = —1.85.
The thickness constraint becomes relevant, if p is larger
than half the characteristic length scale r%‘in of the LJ po-
tential: In the interval 27%/6 ~ 0.561 < p < po ~ 0.686
conformations are pre-helical. The nonbonded interaction
distance is still allowed to be so small that structures are
deformed. Nonetheless, the onset of helix formation is
clearly visible as it is an intrinsic geometrical property of
any linelike object. Optimal space-filling helical symmetry
is reached when approaching p,, where the ground-state
conformation takes the perfect a-helical shape (see inset of
Fig. 1). All torsional angles are identical (near 41.6°) and
also all local radii are constant; the number of monomers
per winding is 3.6. Note that for proteins, where the ef-
fective distance between two C® atoms is about 3.8 A, p,
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Fig. 1: Ground-state energy per monomer Emin/N of tubelike
polymers with nine monomers as a function of the global radius
of curvature constraint p (solid line). For comparison, also the
energy curve of the perfect a-helix is plotted (dashed line).
The inset shows that for a small interval around p =~ 0.686, the
ground-state structure is perfectly a-helical. Also depicted are
side and top views of putative ground-state conformations for
various exemplified values of p. For the purpose of clarity, the
conformations are not shown with their natural thickness.

0.73 0.78

in our units corresponds indeed to a pitch of about 5.4 A
as known from a-helices of proteins. Thus, an a-helix is
a natural geometric shape for tubelike polymers. Hydro-
gen bonds stabilize these structures in nature—but are
not a necessary prerequisite for forming such secondary
structures.

For larger values of p, helices unwind, i.e., the pitch gets
larger and the number of monomers per winding increases.
However, helical structures still dominate the ground-state
conformations. It should be noted that our model is ener-
getically invariant under helicity reversal, i.e., left-handed
helices or segments are not explicitly disfavored and are,
therefore, also equally present in the conformational space.
In the interval p, < p < 0.92, fluctuation peaks of the
derivative dEmin/dp (not shown) indicate that there are
also stable helical conformations in the vicinity of p ~ 0.73
(winding number & 4.5) and p = 0.78 (winding number
~ 5.0). Near p =~ 0.92, the final helical state has been
reached. The thickness has increased in such a way that
the most compact conformation is a helix with a single
winding. After that, a topological change occurs and the
ground-state conformations are getting flatter. The helix
finally opens up and planar conformations with similar-
ities to B-hairpins become dominant. These structures

are still stabilized by nonbonded LJ interactions between
pairs of monomers. Increasing the thickness further leads
to a breaking of these contacts and ringlike conformations
become relevant [16]. We have verified that for values
rgc &= N/2m, ground-state conformations are almost per-
fect circles with radius rg.. The existence of ringlike con-
formations is a consequence of the long-range monomer-
monomer attraction. Eventually, for p — oo, the effective
stiffness increases, also the end contacts disappear, and
only thick rods are still present.

After these preparatory considerations of ground-state
properties, we are now going to discuss the thermody-
namic behavior of the tube polymers. Based on the peak
structure of the specific heat as a function of tempera-
ture T" and thickness constraint p, we identify the struc-
ture of the conformational p-T" pseudophase diagram. We
do this again for the 9mer which allows for a very precise
analysis. Only for such a small system, hundreds of sep-
arate generalized-ensemble computer simulations can be
performed. However, we verified the results also for larger
polymers with up to 13 monomers and found that there are
no significant changes in the phase-diagram topology [21].
Even the expected shifts of the transition lines due to
finite-length corrections are very small such that we have
good reason to assume that the pseudophase diagram of
the 9mer reflects the general phase structure of short tube-
like polymers pretty well. This is partly due to the fact
that the polymer thickness as defined via the global ra-
dius of curvature is a length-independent constraint and
the chains in our study are short enough to prevent the
formation of tertiary structures (as, e.g., arrangements of
different secondary-structure segments forming a tertiary
domain). For longer chains, however, tertiary structures
are definitely relevant. The longest chain in our study, the
polymer with N = 13 monomers, already exhibits first in-
dications of structure formation on globular length scales.
However, the description of such tertiary folding processes
is not in the focus of the present work. Compact globular
conformations form by decreasing the temperature below
the © point whose properties for tubelike polymers are
a study worth in its own right.

Our main results are contained in the phase diagram of
Fig. 2, which shows the specific-heat landscape Cy (p, T') =
((E?), — (E)2)/T? for a 9mer as obtained from reweight-
ing the density of states for given thickness constraint p.
Dark regions correspond to strong energetic fluctuations,
i.e., the darker the region the larger is the specific-heat
value. Data points (+) mark the peaks or ridges of the
profile and indicate conformational activity and thus rep-
resent transitions between different conformational pseu-
dophases. Error bars are not shown for clarity but are
sufficiently small (for most data points smaller than sym-
bol size), so that the identified pseudophase boundaries
are statistically significant.

Guided by the analyses of the ground-state properties,
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Fig. 2: (a) Perspective and (b) projected view of the specific-
heat profile Cv (p,T) for a 9mer which is interpreted as struc-
tural pseudophase diagram of thermodynamically relevant tube
polymer conformations in thickness—temperature parameter
space. Dark regions and data points (+) indicate the ridges
of the landscape and separate conformational phases.

Helical or helix-like conformations dominate in region «,
sheets in region 3, rings in region ~, and stiff rods in pseu-
dophase 4. Circles (®) indicate the locations where the
exemplified conformations of Table 1 are relevant. The
general structure of the phase diagram remains unchanged
also for the longer polymers considered in our study.

we identify four principal pseudophases'. In region a, he-
lical conformations are the most relevant structures. In
particular, the a-helix resides in this pseudophase. Char-
acteristic for the transition from pseudophase a to (8 is
the unwinding of the helical structures which are getting
more planar. Thus, region § is dominated by simple sheet-
like structures. Since the 9mer is rather short, the only
sheet-like class of conformations is the hairpin. For longer
chains, one also finds more complex sheets, e.g., lamel-
lar structures [12,21]. A characteristic property of the
hairpins is that these are still stabilized by nonbonded in-
teractions. These break with larger thickness and higher
temperature. Entering pseudophase v, dominating struc-
tures possess ringlike shapes. Finally, region ¢ is the phase
of random coils, which are getting stiffer for large thickness

1We note that there are singular points in the parameter space
corresponding to special geometric representations of secondary
structures. For the chain with length N = 8 and rgc =~ 1/\/§7
for example, the degenerate ground-state conformation exhibits an
almost perfect alignment of the chain along the edges of a cube.

Table 1: Exemplified conformations being thermodynamically
relevant in the respective pseudophases shown in Fig. 2, visu-
alized in different representations.

phase views of representative example

type

« helix

ol ring

1) rod

and eventually resembling rods. Representative polymer
conformations dominating the pseudophases in the regions
« to § are depicted in Table 1 in different representations.

Summary. — In this Letter we have focused on an
analysis of the thermodynamic properties of tubelike poly-
mers. The tube picture is a simplification of the volume
extension of polymers due to steric constraints of their
backbone or the presence of side chains. The thickness
of such a mesoscopic tube can be considered as a single
steric parameter that induces cooperative effects and per-
mits the discrimination of polymers. Thus, the phase di-
agram presented here does not only allow for the classifi-
cation of possible thermodynamic conformational phases
of a single polymer with fixed thickness. Rather, perform-
ing generalized-ensemble simulations for different thick-
nesses enabled us for the first time to resolve the com-
plete (pseudo)phase behavior with respect to the thick-
ness constraint and temperature. This means that the we
have identified the generic structure of the conformational
phase space at non-zero temperatures for classes of poly-
mers, parametrized by their thickness. Although we em-
ploy a mesoscopic model for flexible polymers, we find that
the thickness constraint is an intrinsic source of an effective
stiffness and enhances the capability of a polymer to form
secondary structures which are stable against thermal fluc-
tuations. The stability limits for increasing temperature
are elucidated in the phase diagram in Fig. 2 which sum-
marizes our main findings. In particular, we clearly find
helical and sheet-like structures which are dominant in dif-
ferent pseudophases. Thus, the thickness is indeed a fun-
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damental physical parameter that allows for the classifi-
cation of polymers with respect to their transition behav-
ior and their preference to form characteristic secondary
structures, depending on external parameters such as tem-
perature.

Since the development of high-resolution experimental
techniques is breathtakingly advancing, the interest in
structural properties on nanoscopic scales is increasing,
in particular when it comes to applications where small
molecules are used as building blocks in the design of
functional molecular machines. In these cases the under-
standing of the effect of sterically induced constraints on
molecular structure formation is of particular importance.
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