Home > Publications database > Tailoring the topological surface state in ultrathin α -Sn(111) films > print |
001 | 872543 | ||
005 | 20230426083217.0 | ||
024 | 7 | _ | |a 10.1103/PhysRevB.100.245144 |2 doi |
024 | 7 | _ | |a 0163-1829 |2 ISSN |
024 | 7 | _ | |a 0556-2805 |2 ISSN |
024 | 7 | _ | |a 1050-2947 |2 ISSN |
024 | 7 | _ | |a 1094-1622 |2 ISSN |
024 | 7 | _ | |a 1095-3795 |2 ISSN |
024 | 7 | _ | |a 1098-0121 |2 ISSN |
024 | 7 | _ | |a 1538-4489 |2 ISSN |
024 | 7 | _ | |a 1550-235X |2 ISSN |
024 | 7 | _ | |a 2469-9950 |2 ISSN |
024 | 7 | _ | |a 2469-9969 |2 ISSN |
024 | 7 | _ | |a 2128/23991 |2 Handle |
024 | 7 | _ | |a altmetric:73522020 |2 altmetric |
024 | 7 | _ | |a WOS:000504446200005 |2 WOS |
037 | _ | _ | |a FZJ-2020-00061 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Rogalev, V. A. |0 0000-0002-9164-2724 |b 0 |e Corresponding author |
245 | _ | _ | |a Tailoring the topological surface state in ultrathin α -Sn(111) films |
260 | _ | _ | |a Woodbury, NY |c 2019 |b Inst. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1600067937_30204 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a We report on the electronic structure of α-Sn films in the very low thickness regime grown on InSb(111)A. High-resolution low photon energy angle-resolved photoemission spectroscopy allows for the direct observation of the linearly dispersing two-dimensional (2D) topological surface state (TSS) that exists between the second valence band and the conduction band. The Dirac point of this TSS was found to be 200 meV below the Fermi level in 10-nm-thick films, which enables the observation of the hybridization gap opening at the Dirac point of the TSS for thinner films. The crossover to a quasi-2D electronic structure is accompanied by a full gap opening at the Brillouin-zone center, in agreement with our density functional theory calculations. We further identify the thickness regime of α-Sn films where the hybridization gap in the TSS coexists with the topologically nontrivial electronic structure and one can expect the presence of a one-dimensional helical edge state. |
536 | _ | _ | |a 142 - Controlling Spin-Based Phenomena (POF3-142) |0 G:(DE-HGF)POF3-142 |c POF3-142 |f POF III |x 0 |
536 | _ | _ | |a Magnetic Anisotropy of Metallic Layered Systems and Nanostructures (jiff13_20131101) |0 G:(DE-Juel1)jiff13_20131101 |c jiff13_20131101 |f Magnetic Anisotropy of Metallic Layered Systems and Nanostructures |x 1 |
542 | _ | _ | |i 2019-12-24 |2 Crossref |u https://link.aps.org/licenses/aps-default-license |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Reis, F. |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Adler, F. |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Bauernfeind, M. |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Erhardt, J. |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Kowalewski, A. |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Scholz, M. R. |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Dudy, L. |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Duffy, L. B. |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Hesjedal, T. |0 0000-0001-7947-3692 |b 9 |
700 | 1 | _ | |a Hoesch, M. |0 P:(DE-HGF)0 |b 10 |
700 | 1 | _ | |a Bihlmayer, G. |0 P:(DE-Juel1)130545 |b 11 |u fzj |
700 | 1 | _ | |a Schäfer, J. |0 P:(DE-HGF)0 |b 12 |
700 | 1 | _ | |a Claessen, R. |0 0000-0003-3682-6325 |b 13 |
773 | 1 | 8 | |a 10.1103/physrevb.100.245144 |b American Physical Society (APS) |d 2019-12-24 |n 24 |p 245144 |3 journal-article |2 Crossref |t Physical Review B |v 100 |y 2019 |x 2469-9950 |
773 | _ | _ | |a 10.1103/PhysRevB.100.245144 |g Vol. 100, no. 24, p. 245144 |0 PERI:(DE-600)2844160-6 |n 24 |p 245144 |t Physical review / B |v 100 |y 2019 |x 2469-9950 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/872543/files/PhysRevB.100.245144.pdf |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/872543/files/PhysRevB.100.245144.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:872543 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 11 |6 P:(DE-Juel1)130545 |
913 | 1 | _ | |a DE-HGF |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-140 |0 G:(DE-HGF)POF3-142 |2 G:(DE-HGF)POF3-100 |v Controlling Spin-Based Phenomena |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
914 | 1 | _ | |y 2019 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a American Physical Society Transfer of Copyright Agreement |0 LIC:(DE-HGF)APS-112012 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHYS REV B : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-1-20110106 |k PGI-1 |l Quanten-Theorie der Materialien |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-1-20090406 |k IAS-1 |l Quanten-Theorie der Materialien |x 1 |
920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l JARA-FIT |x 2 |
920 | 1 | _ | |0 I:(DE-82)080012_20140620 |k JARA-HPC |l JARA - HPC |x 3 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)PGI-1-20110106 |
980 | _ | _ | |a I:(DE-Juel1)IAS-1-20090406 |
980 | _ | _ | |a I:(DE-82)080009_20140620 |
980 | _ | _ | |a I:(DE-82)080012_20140620 |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a FullTexts |
999 | C | 5 | |a 10.1103/PhysRevB.76.045302 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.111.157205 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.111.216401 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.90.125312 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.116.096602 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.95.161117 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.95.201101 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.98.195445 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/s41567-017-0031-6 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1002/pssb.201800513 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.85.235401 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1070/PU1976v019n06ABEH005265 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |1 B. A. Volkov |y 1985 |2 Crossref |o B. A. Volkov 1985 |
999 | C | 5 | |a 10.1038/nmat2770 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.118.146402 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.97.075101 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/nmat4802 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1126/science.aai8142 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1039/C8CS00286J |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/nmat4384 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevMaterials.1.054004 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.97.035122 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1002/adfm.201802723 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/s41563-018-0203-5 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1088/2053-1583/aa9ea0 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1088/2053-1583/ab42b9 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1126/science.1133734 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1126/science.1148047 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1088/1367-2630/16/11/115008 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.98.115153 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.81.041307 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1063/1.4917009 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.24.864 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.19.1706 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1139/p80-159 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.42.5433 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.50.7567 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/S0039-6028(00)00564-1 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1007/BF02655022 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevX.9.031034 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.80.205401 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.86.081303 |9 -- missing cx lookup -- |2 Crossref |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|