000872556 001__ 872556
000872556 005__ 20240711085553.0
000872556 0247_ $$2doi$$a10.1039/C8EE02692K
000872556 0247_ $$2ISSN$$a1754-5692
000872556 0247_ $$2ISSN$$a1754-5706
000872556 0247_ $$2Handle$$a2128/23985
000872556 0247_ $$2altmetric$$aaltmetric:58462629
000872556 0247_ $$2WOS$$aWOS:000471283100005
000872556 037__ $$aFZJ-2020-00062
000872556 082__ $$a690
000872556 1001_ $$0P:(DE-HGF)0$$aSchnell, Joscha$$b0$$eCorresponding author
000872556 245__ $$aProspects of production technologies and manufacturing costs of oxide-based all-solid-state lithium batteries
000872556 260__ $$aCambridge$$bRSC Publ.$$c2019
000872556 3367_ $$2DRIVER$$aarticle
000872556 3367_ $$2DataCite$$aOutput Types/Journal article
000872556 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1579695636_19971
000872556 3367_ $$2BibTeX$$aARTICLE
000872556 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000872556 3367_ $$00$$2EndNote$$aJournal Article
000872556 520__ $$aAll-solid-state batteries (ASSBs) based on oxide solid electrolytes are promising future candidates for safer batteries with high energy density. In order to estimate the future manufacturing cost for oxide based ASSBs, a systematic identification and evaluation of technologies in solid oxide fuel cell (SOFC) and multi-layer ceramic capacitor (MLCC) production has been carried out. Based on a requirements analysis, these technologies are assessed towards their applicability in the production of ASSBs. The most promising technologies are compared by technology readiness using Monte-Carlo simulations. The comprehensive overview and systematic analysis of production scenarios for oxide-based ASSBs reveals significant advantages of established wet coating technologies, such as tape casting and screen printing. However, emerging technologies, such as the aerosol deposition method, could render the high temperature sintering step void. By comparison with SOFC production and adopting learning rates from conventional battery production, an estimation for the manufacturing cost of a garnet-based ASSB is given, indicating that prices below 150 $ kW−1 h−1 at the cell level (incl. housing) are conceivable if the material cost for the garnet solid electrolyte can be pushed below 60 $ kg−1. Based on these findings, scenarios for the scale-up from laboratory research to industrial scale can be derived, paving the way to mass production of safer batteries with high energy density.
000872556 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000872556 588__ $$aDataset connected to CrossRef
000872556 7001_ $$0P:(DE-Juel1)129667$$aTietz, Frank$$b1
000872556 7001_ $$0P:(DE-HGF)0$$aSinger, Célestine$$b2
000872556 7001_ $$0P:(DE-HGF)0$$aHofer, Andreas$$b3
000872556 7001_ $$0P:(DE-HGF)0$$aBillot, Nicolas$$b4
000872556 7001_ $$0P:(DE-HGF)0$$aReinhart, Gunther$$b5
000872556 773__ $$0PERI:(DE-600)2439879-2$$a10.1039/C8EE02692K$$gVol. 12, no. 6, p. 1818 - 1833$$n6$$p1818 - 1833$$tEnergy & environmental science$$v12$$x1754-5706$$y2019
000872556 8564_ $$uhttps://juser.fz-juelich.de/record/872556/files/c8ee02692k.pdf$$yRestricted
000872556 8564_ $$uhttps://juser.fz-juelich.de/record/872556/files/20200120%20Prospects%20on%20production%20technologies%20and%20manufacturing%20cost%20for%20oxide%20based%20all-solid-state%20lithium%20batteries.pdf$$yPublished on 2019-04-02. Available in OpenAccess from 2020-04-02.
000872556 8564_ $$uhttps://juser.fz-juelich.de/record/872556/files/c8ee02692k.pdf?subformat=pdfa$$xpdfa$$yRestricted
000872556 8564_ $$uhttps://juser.fz-juelich.de/record/872556/files/20200120%20Prospects%20on%20production%20technologies%20and%20manufacturing%20cost%20for%20oxide%20based%20all-solid-state%20lithium%20batteries.pdf?subformat=pdfa$$xpdfa$$yPublished on 2019-04-02. Available in OpenAccess from 2020-04-02.
000872556 909CO $$ooai:juser.fz-juelich.de:872556$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000872556 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129667$$aForschungszentrum Jülich$$b1$$kFZJ
000872556 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000872556 9141_ $$y2019
000872556 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000872556 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000872556 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000872556 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENERG ENVIRON SCI : 2017
000872556 915__ $$0StatID:(DE-HGF)9930$$2StatID$$aIF >= 30$$bENERG ENVIRON SCI : 2017
000872556 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000872556 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000872556 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000872556 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000872556 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000872556 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000872556 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000872556 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000872556 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000872556 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000872556 920__ $$lyes
000872556 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000872556 9801_ $$aFullTexts
000872556 980__ $$ajournal
000872556 980__ $$aVDB
000872556 980__ $$aUNRESTRICTED
000872556 980__ $$aI:(DE-Juel1)IEK-1-20101013
000872556 981__ $$aI:(DE-Juel1)IMD-2-20101013