001     872556
005     20240711085553.0
024 7 _ |a 10.1039/C8EE02692K
|2 doi
024 7 _ |a 1754-5692
|2 ISSN
024 7 _ |a 1754-5706
|2 ISSN
024 7 _ |a 2128/23985
|2 Handle
024 7 _ |a altmetric:58462629
|2 altmetric
024 7 _ |a WOS:000471283100005
|2 WOS
037 _ _ |a FZJ-2020-00062
082 _ _ |a 690
100 1 _ |a Schnell, Joscha
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Prospects of production technologies and manufacturing costs of oxide-based all-solid-state lithium batteries
260 _ _ |a Cambridge
|c 2019
|b RSC Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1579695636_19971
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a All-solid-state batteries (ASSBs) based on oxide solid electrolytes are promising future candidates for safer batteries with high energy density. In order to estimate the future manufacturing cost for oxide based ASSBs, a systematic identification and evaluation of technologies in solid oxide fuel cell (SOFC) and multi-layer ceramic capacitor (MLCC) production has been carried out. Based on a requirements analysis, these technologies are assessed towards their applicability in the production of ASSBs. The most promising technologies are compared by technology readiness using Monte-Carlo simulations. The comprehensive overview and systematic analysis of production scenarios for oxide-based ASSBs reveals significant advantages of established wet coating technologies, such as tape casting and screen printing. However, emerging technologies, such as the aerosol deposition method, could render the high temperature sintering step void. By comparison with SOFC production and adopting learning rates from conventional battery production, an estimation for the manufacturing cost of a garnet-based ASSB is given, indicating that prices below 150 $ kW−1 h−1 at the cell level (incl. housing) are conceivable if the material cost for the garnet solid electrolyte can be pushed below 60 $ kg−1. Based on these findings, scenarios for the scale-up from laboratory research to industrial scale can be derived, paving the way to mass production of safer batteries with high energy density.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Tietz, Frank
|0 P:(DE-Juel1)129667
|b 1
700 1 _ |a Singer, Célestine
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Hofer, Andreas
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Billot, Nicolas
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Reinhart, Gunther
|0 P:(DE-HGF)0
|b 5
773 _ _ |a 10.1039/C8EE02692K
|g Vol. 12, no. 6, p. 1818 - 1833
|0 PERI:(DE-600)2439879-2
|n 6
|p 1818 - 1833
|t Energy & environmental science
|v 12
|y 2019
|x 1754-5706
856 4 _ |u https://juser.fz-juelich.de/record/872556/files/c8ee02692k.pdf
|y Restricted
856 4 _ |y Published on 2019-04-02. Available in OpenAccess from 2020-04-02.
|u https://juser.fz-juelich.de/record/872556/files/20200120%20Prospects%20on%20production%20technologies%20and%20manufacturing%20cost%20for%20oxide%20based%20all-solid-state%20lithium%20batteries.pdf
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/872556/files/c8ee02692k.pdf?subformat=pdfa
|y Restricted
856 4 _ |y Published on 2019-04-02. Available in OpenAccess from 2020-04-02.
|x pdfa
|u https://juser.fz-juelich.de/record/872556/files/20200120%20Prospects%20on%20production%20technologies%20and%20manufacturing%20cost%20for%20oxide%20based%20all-solid-state%20lithium%20batteries.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:872556
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129667
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ENERG ENVIRON SCI : 2017
915 _ _ |a IF >= 30
|0 StatID:(DE-HGF)9930
|2 StatID
|b ENERG ENVIRON SCI : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a Allianz-Lizenz / DFG
|0 StatID:(DE-HGF)0400
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21