000872557 001__ 872557
000872557 005__ 20210130004225.0
000872557 0247_ $$2doi$$a10.1016/j.apenergy.2019.114218
000872557 0247_ $$2ISSN$$a0306-2619
000872557 0247_ $$2ISSN$$a1872-9118
000872557 0247_ $$2Handle$$a2128/24100
000872557 0247_ $$2WOS$$aWOS:000515108700096
000872557 037__ $$aFZJ-2020-00063
000872557 082__ $$a620
000872557 1001_ $$0P:(DE-Juel1)171833$$aMorgenthaler, Simon$$b0$$eCorresponding author
000872557 245__ $$aOptimal system layout and locations for fully renewable high temperature co-electrolysis
000872557 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2020
000872557 3367_ $$2DRIVER$$aarticle
000872557 3367_ $$2DataCite$$aOutput Types/Journal article
000872557 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1580372327_17866
000872557 3367_ $$2BibTeX$$aARTICLE
000872557 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000872557 3367_ $$00$$2EndNote$$aJournal Article
000872557 520__ $$aHigh temperature co-electrolysis can be a promising technology for the transformation of energy systems as it enables sector coupling and carbon dioxide utilization. In this article, we analyze the optimal layout and operation of distributed electrolysis sites powered exclusively by local renewable energy sources and a local battery storage device for current techno-economic parameters. For this purpose an energy system model with a spatial resolution of 277 regions within Europe is set up, which facilitates the analysis of intermittent renewable electricity generation, a battery storage device and the innovative high temperature co-electrolysis. We discuss the techno-economic competitiveness and analyze potential leverage points for improvement such as an enhanced flexibility. The lowest costs are found in Lincolnshire with 0.24 €/kWh and the highest costs in Central Slovakia with 0.49 €/kWh differing by more than a factor of two. Remarkably, several locations with vastly different resources and layouts lead to a similar techno-economic performance of the investigated system. We compare the techno-economic performance of high temperature co-electrolysis with steam methane reforming as the conventional synthesis gas production route.
000872557 536__ $$0G:(DE-HGF)POF3-153$$a153 - Assessment of Energy Systems – Addressing Issues of Energy Efficiency and Energy Security (POF3-153)$$cPOF3-153$$fPOF III$$x0
000872557 536__ $$0G:(HGF)VH-NG-1025_20112014$$aVH-NG-1025 - Helmholtz Young Investigators Group "Efficiency, Emergence and Economics of future supply networks" (VH-NG-1025_20112014)$$cVH-NG-1025_20112014$$x1
000872557 536__ $$0G:(DE-Juel1)POWER-2-X-2016$$aP2X - Power-To-X (POWER-2-X-2016)$$cPOWER-2-X-2016$$x2
000872557 588__ $$aDataset connected to CrossRef
000872557 7001_ $$0P:(DE-Juel1)130467$$aKuckshinrichs, Wilhelm$$b1
000872557 7001_ $$0P:(DE-Juel1)162277$$aWitthaut, Dirk$$b2
000872557 773__ $$0PERI:(DE-600)2000772-3$$a10.1016/j.apenergy.2019.114218$$gVol. 260, p. 114218 -$$p114218 -$$tApplied energy$$v260$$x0306-2619$$y2020
000872557 8564_ $$uhttps://juser.fz-juelich.de/record/872557/files/Post%20Print.pdf$$yOpenAccess
000872557 8564_ $$uhttps://juser.fz-juelich.de/record/872557/files/Post%20Print.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000872557 909CO $$ooai:juser.fz-juelich.de:872557$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000872557 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171833$$aForschungszentrum Jülich$$b0$$kFZJ
000872557 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130467$$aForschungszentrum Jülich$$b1$$kFZJ
000872557 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162277$$aForschungszentrum Jülich$$b2$$kFZJ
000872557 9131_ $$0G:(DE-HGF)POF3-153$$1G:(DE-HGF)POF3-150$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lTechnologie, Innovation und Gesellschaft$$vAssessment of Energy Systems – Addressing Issues of Energy Efficiency and Energy Security$$x0
000872557 9141_ $$y2020
000872557 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000872557 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000872557 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000872557 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL ENERG : 2017
000872557 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000872557 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000872557 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000872557 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000872557 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000872557 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bAPPL ENERG : 2017
000872557 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000872557 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000872557 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000872557 9201_ $$0I:(DE-Juel1)IEK-STE-20101013$$kIEK-STE$$lSystemforschung und Technologische Entwicklung$$x0
000872557 980__ $$ajournal
000872557 980__ $$aVDB
000872557 980__ $$aUNRESTRICTED
000872557 980__ $$aI:(DE-Juel1)IEK-STE-20101013
000872557 9801_ $$aFullTexts