000872559 001__ 872559
000872559 005__ 20220930130226.0
000872559 0247_ $$2doi$$a10.1088/1361-6528/ab6d21
000872559 0247_ $$2Handle$$a2128/24452
000872559 0247_ $$2pmid$$apmid:31952059
000872559 0247_ $$2WOS$$aWOS:000518668500001
000872559 037__ $$aFZJ-2020-00065
000872559 082__ $$a530
000872559 1001_ $$0P:(DE-HGF)0$$aZhao, Lan-Tian$$b0
000872559 245__ $$aPhase evolution of ultra-thin Ni silicide films on CF 4 plasma immersion ion implanted Si
000872559 260__ $$aBristol$$bIOP Publ.$$c2020
000872559 3367_ $$2DRIVER$$aarticle
000872559 3367_ $$2DataCite$$aOutput Types/Journal article
000872559 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1583327902_28910
000872559 3367_ $$2BibTeX$$aARTICLE
000872559 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000872559 3367_ $$00$$2EndNote$$aJournal Article
000872559 520__ $$aWe present a systematic study on the effects of CF4 plasma immersion ion implantation (PIII) in Si on the phase evolution of ultra-thin Ni silicides. For 3 nm Ni, NiSi2 was formed on Si substrates with and without CF4 PIII at temperature as low as 400 °C. For 6 nm Ni, NiSi was formed on pure Si, while epitaxial NiSi2 was obtained on CF4 PIII Si. The incorporation of C and F atoms in the thin epitaxial NiSi2 significantly reduces the layer resistivity. Increasing the Ni thickness to 8 nm results in the formation of NiSi, where the thermal stability of NiSi, the NiSi/Si interface and Schottky contacts are significantly improved with CF4 PIII. We suggest that the interface energy is lowered by the F and C dopants present in the layer and at the interface, leading to phase evolution of the thin Ni silicide.
000872559 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000872559 588__ $$aDataset connected to CrossRef
000872559 7001_ $$0P:(DE-Juel1)173033$$aLiu, Mingshan$$b1$$ufzj
000872559 7001_ $$0P:(DE-HGF)0$$aRen, Qing-Hua$$b2
000872559 7001_ $$0P:(DE-HGF)0$$aLiu, Chen-He$$b3
000872559 7001_ $$0P:(DE-HGF)0$$aLiu, Qiang$$b4
000872559 7001_ $$0P:(DE-HGF)0$$aChen, Ling-Li$$b5
000872559 7001_ $$0P:(DE-HGF)0$$aSpiegel, Yohann$$b6
000872559 7001_ $$0P:(DE-HGF)0$$aTorregrosa, Frank$$b7
000872559 7001_ $$0P:(DE-HGF)0$$aYu, Wenjie$$b8
000872559 7001_ $$0P:(DE-Juel1)128649$$aZhao, Qing-Tai$$b9$$eCorresponding author
000872559 773__ $$0PERI:(DE-600)1362365-5$$a10.1088/1361-6528/ab6d21$$gVol. 31, no. 20, p. 205201 -$$n20$$p205201 -$$tNanotechnology$$v31$$x0957-4484$$y2020
000872559 8564_ $$uhttps://juser.fz-juelich.de/record/872559/files/Zhao_2020_Nanotechnology_31_205201.pdf$$yOpenAccess
000872559 8564_ $$uhttps://juser.fz-juelich.de/record/872559/files/Zhao_2020_Nanotechnology_31_205201.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000872559 8767_ $$92020-01-07$$d2020-01-08$$eHybrid-OA$$jOffsetting$$lOffsetting: IOP$$pNANO-123363.R2
000872559 909CO $$ooai:juser.fz-juelich.de:872559$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000872559 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173033$$aForschungszentrum Jülich$$b1$$kFZJ
000872559 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128649$$aForschungszentrum Jülich$$b9$$kFZJ
000872559 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000872559 9141_ $$y2020
000872559 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000872559 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000872559 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000872559 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000872559 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANOTECHNOLOGY : 2017
000872559 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000872559 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000872559 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000872559 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000872559 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000872559 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000872559 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000872559 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000872559 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000872559 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000872559 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000872559 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000872559 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000872559 980__ $$ajournal
000872559 980__ $$aVDB
000872559 980__ $$aUNRESTRICTED
000872559 980__ $$aI:(DE-Juel1)PGI-9-20110106
000872559 980__ $$aAPC
000872559 9801_ $$aAPC
000872559 9801_ $$aFullTexts