Home > Publications database > Phase evolution of ultra-thin Ni silicide films on CF 4 plasma immersion ion implanted Si > print |
001 | 872559 | ||
005 | 20220930130226.0 | ||
024 | 7 | _ | |a 10.1088/1361-6528/ab6d21 |2 doi |
024 | 7 | _ | |a 2128/24452 |2 Handle |
024 | 7 | _ | |a pmid:31952059 |2 pmid |
024 | 7 | _ | |a WOS:000518668500001 |2 WOS |
037 | _ | _ | |a FZJ-2020-00065 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Zhao, Lan-Tian |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Phase evolution of ultra-thin Ni silicide films on CF 4 plasma immersion ion implanted Si |
260 | _ | _ | |a Bristol |c 2020 |b IOP Publ. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1583327902_28910 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a We present a systematic study on the effects of CF4 plasma immersion ion implantation (PIII) in Si on the phase evolution of ultra-thin Ni silicides. For 3 nm Ni, NiSi2 was formed on Si substrates with and without CF4 PIII at temperature as low as 400 °C. For 6 nm Ni, NiSi was formed on pure Si, while epitaxial NiSi2 was obtained on CF4 PIII Si. The incorporation of C and F atoms in the thin epitaxial NiSi2 significantly reduces the layer resistivity. Increasing the Ni thickness to 8 nm results in the formation of NiSi, where the thermal stability of NiSi, the NiSi/Si interface and Schottky contacts are significantly improved with CF4 PIII. We suggest that the interface energy is lowered by the F and C dopants present in the layer and at the interface, leading to phase evolution of the thin Ni silicide. |
536 | _ | _ | |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521) |0 G:(DE-HGF)POF3-521 |c POF3-521 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Liu, Mingshan |0 P:(DE-Juel1)173033 |b 1 |u fzj |
700 | 1 | _ | |a Ren, Qing-Hua |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Liu, Chen-He |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Liu, Qiang |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Chen, Ling-Li |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Spiegel, Yohann |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Torregrosa, Frank |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Yu, Wenjie |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Zhao, Qing-Tai |0 P:(DE-Juel1)128649 |b 9 |e Corresponding author |
773 | _ | _ | |a 10.1088/1361-6528/ab6d21 |g Vol. 31, no. 20, p. 205201 - |0 PERI:(DE-600)1362365-5 |n 20 |p 205201 - |t Nanotechnology |v 31 |y 2020 |x 0957-4484 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/872559/files/Zhao_2020_Nanotechnology_31_205201.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/872559/files/Zhao_2020_Nanotechnology_31_205201.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:872559 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)173033 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)128649 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-520 |0 G:(DE-HGF)POF3-521 |2 G:(DE-HGF)POF3-500 |v Controlling Electron Charge-Based Phenomena |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a Creative Commons Attribution CC BY 3.0 |0 LIC:(DE-HGF)CCBY3 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NANOTECHNOLOGY : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-9-20110106 |k PGI-9 |l Halbleiter-Nanoelektronik |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)PGI-9-20110106 |
980 | _ | _ | |a APC |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|