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Abstract
We present a systematic study on the effects of CF4 plasma immersion ion implantation (PIII) in
Si on the phase evolution of ultra-thin Ni silicides. For 3 nm Ni, NiSi2 was formed on Si
substrates with and without CF4 PIII at temperature as low as 400 °C. For 6 nm Ni, NiSi was
formed on pure Si, while epitaxial NiSi2 was obtained on CF4 PIII Si. The incorporation of C and
F atoms in the thin epitaxial NiSi2 significantly reduces the layer resistivity. Increasing the Ni
thickness to 8 nm results in the formation of NiSi, where the thermal stability of NiSi, the NiSi/
Si interface and Schottky contacts are significantly improved with CF4 PIII. We suggest that the
interface energy is lowered by the F and C dopants present in the layer and at the interface,
leading to phase evolution of the thin Ni silicide.
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(Some figures may appear in colour only in the online journal)

1. Introduction

NiSi is used as Ohmic or Schottky contacts at the source/
drain and gate in metal-oxide-semiconductor field effect
transistors (MOSFETs) because of its low resistivity, low
thermal budget and silicon consumption [1–3]. Ultra-thin
silicide layers with high uniformity are required for scaled
nanometre devices. However, the instability of NiSi due to
low transition temperature to highly resistive NiSi2 phase and
grain agglomeration, especially for very thin layers at high
temperatures, results in rough interface and surface, causing
non-uniform contacts and substantial leakage at shallow

junctions [4–6]. The thermal stability of the NiSi layer has
been improved by incorporating elements such as Pt [7, 8], C
[9, 10] and F [11] in Ni or silicon substrate or adding a new
thin layer [12, 13]. With these methods the thermal stability of
NiSi was increased at least 100 °C by inhibiting the
agglomeration of NiSi grains and delaying NiSi2 nucleation.

The solid-state reaction of Ni with a Si substrate leads to the
sequence phase formation of δ-Ni2Si, NiSi and NiSi2. High
resistivity phase NiSi2 forms at an annealing temperature nor-
mally higher than 700 °C [14–17]. The interface energy plays an
important role in phase evolution, especially when the film
thickness is very thin [18, 19]. The phase formation sequence
can be changed with a decrease of film thickness. Recent reports
showed that when the thickness of the deposited Ni film is less
than 4 nm, epitaxial NiSi2 layers with high single crystalline
quality and high thermal stability are formed even at low tem-
peratures (300 °C) [20–23]. During the silicidation process, no
NiSi phase is observed, but epitaxial θ-Ni2Si mesophase is
found before the formation of epitaxial NiSi2 [22]. The epitaxial
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NiSi2 layer with an atomic flat NiSi2/Si interface shows super
properties and has been used for advanced nanometre transistors
[24–26]. The thickness of the epitaxial NiSi2 is limited to
<10 nm due to the limited Ni thickness (<3 nm). Moreover,
when the thickness of the Ni film is less than 6 nm, θ-Ni2Si
replaces δ-Ni2Si as the first phase during silicidation [22]. The
phase evolution can also be changed by additive elements
especially in very thin films. For example, epitaxial θ-Ni2Si
instead of δ-Ni2Si was obtained as the first phase by silicidation
of Ni-Pt alloy with Si [27–29]. Geenen et al [30] discovered a
broader temperature range for δ-Ni2Si formation and low-
temperature NiSi2 formation with 10% Co in 9 nm Ni. They also
concluded that the NiSi formation is delayed by 10% Al doped
in 9 nm Ni. However, for silicidation with C and F incorpora-
tions, only the phase formation behaviour was investigated in
the case of thick films [9–11]. It should be very interesting to
investigate the phase evolution of nickel silicide in the ultra-thin
films combining the effect of C and F elements.

This paper presents the phase evolution of Ni silicides
with different Ni thicknesses (3 nm, 6 nm and 8 nm) on CF4
plasma pre-implanted Si (100), aiming to study the impact of
Ni thickness and the effects of C and F impurities on the
phase evolution. This enables us to obtain a comprehensive
understanding of silicide formation as a function of film
thickness and the effects of impurities.

2. Experimental

Figures 1(a)–(c) show the silicidation process. In this work,
300 mm p-type silicon (100) wafers were used as substrates.

Firstly, CF4 plasma immersion ion implantation (PIII) was
applied using PULSION plasma implanter developed by Ion
Beam Services (IBS) into Si substrates (figure 1(a)) at room
temperature at a plasma energy of 2.5 keV to a fluence of
5×1015 cm−2. The distributions of C and F in Si measured
by secondary ion mass spectrometry (SIMS) were presented
in figure 1(d). It showed very high density of C and F atoms
with peak concentrations of ∼2×1021 C cm−3 and ∼6×
1021 F cm−3 in Si within a depth of 20 nm. The F peak is
located at a depth of ∼3 nm. CF4 PIII offers high efficiency to
introduce a high concentration of C and F atoms closer to the
surface than the beamline ion implantation.

Subsequently, these wafers were cut into small pieces for
further processing. After removing the native SiO2 in 1% HF
solution, Ni layers with different thickness (3 nm, 6 nm and
8 nm) were deposited onto the Si substrate by sputtering
(figure 1(b)). Then the silicidation process was carried out
with rapid thermal annealing (RTA) for 10 s at different
temperatures ranging from 300 °C to 750 °C in forming gas
(96% N2 and 4% H2) (figure 1(c)). Finally, the unreacted Ni
was removed with H2SO4:H2O2 (4:1) solution.

The fabricated silicide layers were characterized
with different techniques. The thermal stability was detected
by van der Pauw resistance measurements. The morpholo-
gies of the layer and the silicide/silicon interface were
investigated by transmission electron microscope (TEM).
Rutherford backscattering spectrometry (RBS) was
used to measure the silicide composition and thickness.
The distribution of elements in the sample was measured
by SIMS.

Figure 1. (a)–(c) Silicidation process on CF4 PIII treated Si(100) substrates; (d) SIMS profiles of C and F in Si after CF4 PIII; (e)–(g) sheet
resistance of nickel silicide layers formed with 3 nm, 6 nm and 8 nm Ni, respectively, showing the thermal stability of the silicide layers. The
reference samples represent the layers formed on Si(100) without CF4 PIII.
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3. Results

Because of the large difference in resistivity between NiSi and
NiSi2, the sheet resistance measurement could offer a reliable
way to study the phase formation. Figures 1(e)–(g) show the
thermal stability of the silicide layers by plotting the sheet
resistance as a function of silicidation temperature for sili-
cides formed with 3 nm, 6 nm and 8 nm Ni, respectively.
Reference samples without PIII are shown for comparison.

3.1. Silicide formed with 3 nm Ni

For the silicide layers formed with 3 nm Ni, the sheet resist-
ance value remains almost constant with the annealing
temperature from 400 °C to 750 °C, as shown in figure 1(e). It
has already been reported that an epitaxial NiSi2 layer was
formed on Si (100) when the Ni layer is <3 nm [20].
Experimental results presented in this paper for the 3 nm Ni
reference sample are consistent with the published results. In
addition, the RBS channelling measurements indicate that a
single crystalline NiSi2 layer with a thickness of ∼9 nm was
formed on the PIII samples, as indicated in figure 2(b). The
cross section TEM image in figure 2(a) further shows an
epitaxial NiSi2 layer with a flat surface. However, pyramids
with wedge-shaped (111) facets in some regions were
observed at the interface, which resulted from the lower
surface energy of (111) surfaces. Surprisingly, the sheet
resistance of the NiSi2 layer formed on CF4 PIII Si substrate is
much lower than the reference sample. At a silicidation
temperature of 500 °C, the sheet resistance of the NiSi2 layer
formed on CF4 PIII Si substrate is only 18.7 Ω/,, corresp-
onding to a specific resistivity of 16.8 μΩ cm which is
comparable to the value of NiSi, while the reference sample
shows a sheet resistance of 61.9 Ω/, for a specific resistivity
of 55.7 μΩ cm. The lower resistivity with CF4 should be
related to the C and F incorporation in the NiSi2 layers. We
found that C atoms and part of the F atoms distribute in the

NiSi2 layer (see also figure 7 for 6 nm Ni), which may reduce
the point defects in the layer, similar to the behaviour found
for NiSi [9]. The effects of C and F in the layer for the low
resistivity are still not very clear and requires more invest-
igation. In addition, at a higher silicidation temperature of
750 °C, the epitaxial layer with perfect uniformity and atomic
flat surface/interface was achieved, as indicated in figure 2(c).

3.2. Silicide formed with 6 nm Ni

For 6 nm Ni samples, a much larger thermal stability window
is found for the layers formed on PIII treated substrates, as
shown in figure 1(f). Figure 3(a) shows the RBS random and
channelling spectra for the Ni silicide layers formed with
6 nm Ni at 450 °C. It is clearly seen that a NiSi layer with a
thickness of ∼12 nm was formed on pure Si (100) without
PIII, which is indicated by the higher Ni signal in the RBS
spectrum (green). However, the RBS channelling spectrum
indicates that an epitaxial NiSi2 layer with a thickness of
∼19 nm was formed on CF4 PIII Si (100) at 450 °C. The
single crystalline NiSi2 layer shows higher thermal stability
than the NiSi layer as shown in figure 1(f). At 450 °C, the
NiSi2 layer shows a sheet resistance of 14.2 Ω/, corresp-
onding to a specific resistivity of 27 μΩ cm, which is higher
than the layer formed with 3 nm Ni due to more defects, as
compared by the TEM images in figures 2 and 3, but lower
than the NiSi2 layer formed with 3 nm Ni on the reference
sample. The reference NiSi layer has a sheet resistance of 17
Ω/, for a resistivity of 20.4 μΩ cm. The NiSi layer formed
on pure Si suffers agglomeration at temperatures >600°C,
thus causing the degradation of sheet resistance.

Figures 3(b) and (c) show the cross section TEM images
for NiSi2 layers formed with 6 nm Ni layer at silicidation
temperature of 500 °C and 650 °C, respectively. The com-
parison of these two TEM images shows that the NiSi2 (111)
facets for the layer formed at 650 °C annealing temperature is
less than that at 500 °C, indicating that higher annealing

Figure 2. (a) Cross section TEM image for the NiSi2 layer formed with 3 nm Ni on CF4 implanted Si (100) at 500 °C. (b) The RBS random
and channelling spectra for the NiSi2 layer formed at 400 °C on the CF4 implanted Si (100) substrate, showing an epitaxial NiSi2 layer on Si
(100). (c) A TEM image shows high quality epitaxial NiSi2 layer with an atomic flat NiSi2/Si interface formed at 750 °C.
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temperature is needed for higher single crystalline quality of
the NiSi2 layer, which is similar as the case of 3 nm Ni. The
formed NiSi2 layer shows much better surface compared to
the NiSi layer formed on pure Si(100) substrate due to the
single crystallinity.

X-ray reciprocal space mapping (RSM) measurement fur-
ther shows that the NiSi2 layer grows psuedomorphically and a
forms single crystal on the CF4 PIII silicon substrate with tensile
strain, as demonstrated in figure 4. NiSi2 has a cubic structure
with a lattice constant of 5.406 Å [31]. However, the lattice
constant of NiSi2 in the surface perpendicular direction is about
5.37 Å, smaller than the value in the reference. Due to the
relatively low single crystalline quality and thin layer of NiSi2,

the NiSi2 signal is not sharp compared to the Si substrate signal.
The incorporation of C and F in the NiSi2 layer and the relatively
low single crystalline quality could cause a smaller measured
lattice constant of NiSi2 in the surface perpendicular direction.

3.3. Silicide formed with 8 nm Ni

From the RBS measurements (not shown) for 8 nm Ni sam-
ples, we found that ∼15 nm thick NiSi layers were formed on
both the pure Si and CF4 PIII Si substrates at silicidation
temperatures ranging from 400 °C to 650 °C. Figure 5 shows
cross section TEM images for the NiSi layers formed on Si
substrates with and without CF4 PIII. The NiSi/Si interface is
much smoother on the CF4 PIII Si substrate, which leads to an
increase of the thermal stability of NiSi as shown in
figure 1(g).

Table 1 summarizes the Ni silicide phase formed on Si
(100) at a temperature range from 400 °C to 650 °C, in which
all the layers are thermally stable as shown in figures 1(e)–(g).
From table 1, we can see that CF4 PIII increases the critical
thickness of Ni for direct formation of NiSi2 from 3 nm to
6 nm. Figure 6 displays the phase evolution and the
corresponding specific resistivity for silicides formed at
500 °C on Si substrates with and without CF4 PIII. It is very
interesting that the NiSi2 layer formed with 3 nm Ni on CF4
PIII Si substrate shows a very low resistivity which is com-
parable and even lower than that of NiSi formed with 6 and
8 nm Ni on pure Si substrates. This is a big advantage for
applications because the epitaxial NiSi2 is much more stable
and uniform.

4. Discussion

It is known that the growth kinetics of NiSi2 is nucleation
controlled, while NiSi is controlled by diffusion with Ni as
the diffusing specie [15, 16]. However, when the initial Ni
film is thinner than 4 nm, reactions are no longer limited by
atomic diffusion [19, 32, 33]. Interface energy plays a vital

Figure 3. (a) RBS random and channelling spectra for the Ni silicide layer formed with 6 nm Ni at 450 °C on CF4 implanted Si, showing an
epitaxial NiSi2 layer. However, the RBS spectrum (green) for the reference sample shows a NiSi layer formed on pure Si (100). (b), (c) Cross
sectional TEM image for NiSi2 formed on CF4 implanted Si (100) with 6 nm Ni after annealing at (b) 500 °C, and (c) 650 °C. The NiSi2/Si
interface is improved with high temperature.

Figure 4. X-ray RSM for NiSi2 formed with 6 nm Ni at 450 °C on
CF4 PIII Si (100), showing lattice constant of 5.37 Å for NiSi2 in the
surface perpendicular direction and the same lattice constant as Si
(100) (5.43 Å) in plain, thus causing a biaxial tensile strain in NiSi2.
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role for ultra-thin films. Consequently, epitaxial NiSi2 instead
of polycrystalline NiSi is formed at low temperatures
(400 °C). From the nucleation theory the silicide phase should
be formed with a larger Gibbs free energy (DG) reduction
which is given by [34]:

( ) ( )s sD = D + D = D + D - DG G H T S 1V

where sD is the interface energy change in which the grain
boundary energy and the interface energy changed by strain
are included.DGV is the free energy difference in volume and
DH is the enthalpy change, T is the temperature, and DS is
the entropy difference. Since DS is usually very small, DG
for both NiSi and NiSi2 phase can be written as the following:

( )sD = D + DG t H2.01 for NiSi 21 1 1

( )sD = D + DG t H3.59 for NiSi 32 2 2 2

where t is the thickness of the Ni film. The factors 2.01 and 3.59
are the corresponding silicide/Ni thickness ratio [31]. The heat

of formation ΔH for NiSi and NiSi2 are −10.3 kcal/mol.at and
−7.2 kcal/mol.at, respectively [35]. Taking the molecular den-
sity of 4.552×1022 cm−3 for NiSi and 2.457×1022 cm−3 for
NiSi2 into account we can obtain D =H1 −0.78 kcal cm−3.at
and D =H2 −0.29 kcal cm−3.at. In addition, sD 2 is usually less
than sD 1 due to the epitaxy of NiSi2. Therefore we can conclude
∣ ∣ ∣ ∣D > DG G ,1 2 favoring the NiSi formation when t is larger,
as demonstrated schematically by solid lines in figure 8. For a
very thin Ni layer, the interface energy ( sD ) contributes more to
DG according to equations (2) and (3), which means
∣ ∣ ∣ ∣D < DG G1 2 when the film thickness is less than a critical
thickness t1. The epitaxial atomic alignment of NiSi2 reduces the
interfacial energy and is thus energetically favourable for its
formation for a small thickness of Ni film.

It is likely that dopants like C and F change the silicide
formation behaviour by affecting the interfacial energy.
Figure 7 shows the SIMS profiles of C and F in NiSi2 formed
with 6 nm Ni. It is found that the distribution of C atoms is
almost independent of silicidation temperature. More F atoms
segregate at the interface by increasing temperature, as indi-
cated by the higher F peak at the NiSi2/Si interface. F seg-
regation results are also found for other samples with different
Ni thicknesses (not shown). Most C, and a portion of F atoms,
exist in the silicide, refining the grain boundaries of silicide
and reducing the defects. A large density of F atoms segregate
at the silicide/Si interface, which enhances the interface
cohesion and makes the interface smoother [9–11]. Therefore,
for the formation of NiSi2 with 3 nm Ni, CF4 PIII caused a
lower density of the pyramids at the interface and decreased
the sheet resistance of NiSi2. For the formation of NiSi with
8 nm Ni, the smoother surface and interface increase the
nucleation barrier of NiSi2 and thus enhance the thermal
stability of NiSi [36].

We suppose that the entropy and enthalpy changed by C
and F atoms are very small. The slope of the lines is then still
dominated by the heat of formation. Our experimental results
indicate a larger critical thickness in PIII samples. Thus we can
conclude a smaller sD 1 and a larger sD 2 decrease, as illustrated
in figure 8.

Figure 5. Cross section TEM images of silicide layers formed with
8 nm Ni on (a) pure Si (100) for reference; and CF4 PIII treated Si
(100) (b), showing improved layer uniformity and smoother NiSi/Si
interface for the CF4 PIII sample.

Table 1. Summary of silicide phase on Si (100) with and without
CF4 PIII.

Ni thickness w/o CF4 PIII With CF4 PIII

3 nm NiSi2 NiSi2
6 nm NiSi NiSi2
8 nm NiSi NiSi

Figure 6. Summary of the phase evolution and corresponding
specific resistivity for silicides formed at 500 °C with different Ni
thicknesses.
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Moreover, by using equations (2) and (3), the difference
of interface energy change between reaction Ni + Si → NiSi
and Ni+Si→NiSi2 can be obtained at a known critical
thickness tc:

( ) ( )s s sD = D - D = D - Dt H H2.01 3.59 4c1 2 1 2*

Then the ratio of sD * between the reactions with and
without CF4 PIII is simply expressed as:

( )/
s
s

D
D

µ t t 5A

B
A B

*
*

From our experimental results, tA and tB correspond to
approximately 3 nm and 6 nm, respectively. In consequence, a
factor of ×2 is obtained for the sD * change by CF4 PIII.

As an application test we characterized the NiSi/p-Si (100)
Schottky contacts formed with 8 nm Ni at 500 °C. Figure 9
shows the measured reverse currents of two back-to-back
Schottky diodes. It is interesting that the diode on the CF4 PIII
p-Si substrate shows a lower Schottky barrier height (SBH)
which is indicated by the higher reverse currents. We extracted
from the I–V characteristics a lower SBH of 0.410 eV on the CF4
PIII substrates compared to the SBH=0.458 eV on Si without
CF4 PIII. The improved NiSi/Si interface by CF4 PIII is reflected
by the smaller ideal factor of n=1.02 with respect to n=1.06
for the diode on pure Si(100) substrate. The segregation of C and
F atoms at the interface passivate the interface and lower the
SBH. The lower SBH and n can improve the contacts for
nanoelectronics.

5. Conclusions

In conclusion, phase evolution of Ni silicides formed with ultra-
thin Ni films on pure Si (100) and CF4 PIII treated Si (100) have
been systematically studied. It is revealed that both film thick-
ness and CF4 incorporation can affect the phase evolution and
the morphology of Ni silicides. C and F atoms distributed in the
silicide layer and at the silicide/Si interface decrease the inter-
face energy, thus resulting in an increase of the critical thickness
tc of direct formation of NiSi2 phase at low temperatures. With
the CF4 PIII condition applied in this work tc is doubled by CF4
PIII. With a Ni layer thickness >tc, for example 8 nm Ni, CF4
PIII improves the NiSi layer uniformity and the interface
smoothness. In improved layer uniformity, resistivity and SBH
offer benefits for nanoelectronic applications.
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Figure 7. SIMS profiles for C and F atoms in the NiSi2 layers formed
at 450 °C and 750 °C with 6 nm Ni on CF4 PIII Si(100), showing F
segregation at the NiSi2/Si interface. The increasing temperature
slightly enhances the F segregation at the interface.

Figure 8. Schematic showing free energy change ΔG versus film
thickness d for the formation of NiSi and NiSi2. CF4 PIII lowers the
interface energy.

Figure 9. I–V characteristics of two back-to-back NiSi/p-Si
Schottky diodes with and without CF4 PIII before silicidation. The
measured reverse currents clearly demonstrated a lower SBH on CF4
PIII Si.
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