000872562 001__ 872562
000872562 005__ 20240610121157.0
000872562 0247_ $$2doi$$a10.1038/s41598-020-57775-4
000872562 0247_ $$2Handle$$a2128/24238
000872562 0247_ $$2pmid$$apmid:32005832
000872562 0247_ $$2WOS$$aWOS:000562877200006
000872562 037__ $$aFZJ-2020-00068
000872562 041__ $$aEnglish
000872562 082__ $$a600
000872562 1001_ $$0P:(DE-Juel1)171559$$aBalacescu, Livia$$b0$$ufzj
000872562 245__ $$aTransition between protein-like and polymer-like dynamic behavior: Internal friction in unfolded apomyoglobin depends on denaturing conditions
000872562 260__ $$a[London]$$bMacmillan Publishers Limited, part of Springer Nature$$c2020
000872562 3367_ $$2DRIVER$$aarticle
000872562 3367_ $$2DataCite$$aOutput Types/Journal article
000872562 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1617221298_32719
000872562 3367_ $$2BibTeX$$aARTICLE
000872562 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000872562 3367_ $$00$$2EndNote$$aJournal Article
000872562 520__ $$aEquilibrium dynamics of different folding intermediates and denatured states is strongly connected to the exploration of the conformational space on the nanosecond time scale and might have implications in understanding protein folding. For the first time, the same protein system apomyoglobin has been investigated using neutron spin-echo spectroscopy in different states: native-like, partially folded (molten globule) and completely unfolded, following two different unfolding paths: using acid or guanidinium chloride (GdmCl). While the internal dynamics of the native-like state can be understood using normal mode analysis based on high resolution structural information of myoglobin, for the unfolded and even for the molten globule states, models from polymer science are employed. The Zimm model accurately describes the slowly-relaxing, expanded GdmCl-denaturated state, ignoring the individuality of the different aminoacid side chain. The dynamics of the acid unfolded and molten globule state are similar in the framework of the Zimm model with internal friction, where the chains still interact and hinder each other: the first Zimm relaxation time is as large as the internal friction time. Transient formation of secondary structure elements in the acid unfolded and presence of α-helices in the molten globule state lead to internal friction to a similar extent.
000872562 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000872562 588__ $$aDataset connected to CrossRef
000872562 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x0
000872562 65017 $$0V:(DE-MLZ)GC-1602-2016$$2V:(DE-HGF)$$aPolymers, Soft Nano Particles and  Proteins$$x0
000872562 693__ $$0EXP:(DE-MLZ)KWS2-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS2-20140101$$6EXP:(DE-MLZ)NL3ao-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-2: Small angle scattering diffractometer$$fNL3ao$$x0
000872562 693__ $$0EXP:(DE-MLZ)J-NSE-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)J-NSE-20140101$$6EXP:(DE-MLZ)NL2ao-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eJ-NSE: Neutron spin-echo spectrometer$$fNL2ao$$x1
000872562 7001_ $$0P:(DE-Juel1)138266$$aSchrader, Tobias E.$$b1$$eCorresponding author$$ufzj
000872562 7001_ $$0P:(DE-Juel1)130905$$aRadulescu, Aurel$$b2$$ufzj
000872562 7001_ $$0P:(DE-Juel1)136992$$aZolnierczuk, Piotr$$b3$$ufzj
000872562 7001_ $$0P:(DE-Juel1)130718$$aHolderer, Olaf$$b4$$ufzj
000872562 7001_ $$0P:(DE-Juel1)145049$$aPasini, Stefano$$b5$$ufzj
000872562 7001_ $$0P:(DE-Juel1)131961$$aFitter, Jörg$$b6$$ufzj
000872562 7001_ $$0P:(DE-Juel1)140278$$aStadler, Andreas M.$$b7$$ufzj
000872562 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/s41598-020-57775-4$$gVol. 10, no. 1, p. 1570$$n1$$p1570$$tScientific reports$$v10$$x2045-2322$$y2020
000872562 8564_ $$uhttps://juser.fz-juelich.de/record/872562/files/Invoice_2676171434-1.pdf
000872562 8564_ $$uhttps://juser.fz-juelich.de/record/872562/files/Invoice_2676171434-1.pdf?subformat=pdfa$$xpdfa
000872562 8564_ $$uhttps://juser.fz-juelich.de/record/872562/files/s41598-020-57775-4.pdf$$yOpenAccess
000872562 8564_ $$uhttps://juser.fz-juelich.de/record/872562/files/s41598-020-57775-4.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000872562 8767_ $$82676171434$$92020-01-08$$d2020-01-20$$eAPC$$jZahlung erfolgt$$p2371fd53-bbcc-4ca7-9c32-5e137c1e555a$$zDublette FZJ-2020-00810 gelöscht
000872562 909CO $$ooai:juser.fz-juelich.de:872562$$pdnbdelivery$$popenCost$$pVDB$$pVDB:MLZ$$pdriver$$pOpenAPC$$popen_access$$popenaire
000872562 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171559$$aForschungszentrum Jülich$$b0$$kFZJ
000872562 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138266$$aForschungszentrum Jülich$$b1$$kFZJ
000872562 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130905$$aForschungszentrum Jülich$$b2$$kFZJ
000872562 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)136992$$aForschungszentrum Jülich$$b3$$kFZJ
000872562 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130718$$aForschungszentrum Jülich$$b4$$kFZJ
000872562 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145049$$aForschungszentrum Jülich$$b5$$kFZJ
000872562 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131961$$aForschungszentrum Jülich$$b6$$kFZJ
000872562 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140278$$aForschungszentrum Jülich$$b7$$kFZJ
000872562 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000872562 9132_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000872562 9141_ $$y2020
000872562 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000872562 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000872562 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000872562 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000872562 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000872562 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI REP-UK : 2017
000872562 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000872562 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000872562 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000872562 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000872562 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000872562 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000872562 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000872562 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000872562 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000872562 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000872562 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000872562 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000872562 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000872562 920__ $$lyes
000872562 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000872562 9201_ $$0I:(DE-Juel1)ICS-5-20110106$$kICS-5$$lMolekulare Biophysik$$x1
000872562 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kJCNS-1$$lNeutronenstreuung$$x2
000872562 9201_ $$0I:(DE-Juel1)JCNS-SNS-20110128$$kJCNS-SNS$$lJCNS-SNS$$x3
000872562 9801_ $$aAPC
000872562 9801_ $$aFullTexts
000872562 980__ $$ajournal
000872562 980__ $$aVDB
000872562 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000872562 980__ $$aI:(DE-Juel1)ICS-5-20110106
000872562 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000872562 980__ $$aI:(DE-Juel1)JCNS-SNS-20110128
000872562 980__ $$aAPC
000872562 980__ $$aUNRESTRICTED
000872562 981__ $$aI:(DE-Juel1)IBI-6-20200312
000872562 981__ $$aI:(DE-Juel1)ER-C-3-20170113