000872562 001__ 872562 000872562 005__ 20240610121157.0 000872562 0247_ $$2doi$$a10.1038/s41598-020-57775-4 000872562 0247_ $$2Handle$$a2128/24238 000872562 0247_ $$2pmid$$apmid:32005832 000872562 0247_ $$2WOS$$aWOS:000562877200006 000872562 037__ $$aFZJ-2020-00068 000872562 041__ $$aEnglish 000872562 082__ $$a600 000872562 1001_ $$0P:(DE-Juel1)171559$$aBalacescu, Livia$$b0$$ufzj 000872562 245__ $$aTransition between protein-like and polymer-like dynamic behavior: Internal friction in unfolded apomyoglobin depends on denaturing conditions 000872562 260__ $$a[London]$$bMacmillan Publishers Limited, part of Springer Nature$$c2020 000872562 3367_ $$2DRIVER$$aarticle 000872562 3367_ $$2DataCite$$aOutput Types/Journal article 000872562 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1617221298_32719 000872562 3367_ $$2BibTeX$$aARTICLE 000872562 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000872562 3367_ $$00$$2EndNote$$aJournal Article 000872562 520__ $$aEquilibrium dynamics of different folding intermediates and denatured states is strongly connected to the exploration of the conformational space on the nanosecond time scale and might have implications in understanding protein folding. For the first time, the same protein system apomyoglobin has been investigated using neutron spin-echo spectroscopy in different states: native-like, partially folded (molten globule) and completely unfolded, following two different unfolding paths: using acid or guanidinium chloride (GdmCl). While the internal dynamics of the native-like state can be understood using normal mode analysis based on high resolution structural information of myoglobin, for the unfolded and even for the molten globule states, models from polymer science are employed. The Zimm model accurately describes the slowly-relaxing, expanded GdmCl-denaturated state, ignoring the individuality of the different aminoacid side chain. The dynamics of the acid unfolded and molten globule state are similar in the framework of the Zimm model with internal friction, where the chains still interact and hinder each other: the first Zimm relaxation time is as large as the internal friction time. Transient formation of secondary structure elements in the acid unfolded and presence of α-helices in the molten globule state lead to internal friction to a similar extent. 000872562 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0 000872562 588__ $$aDataset connected to CrossRef 000872562 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x0 000872562 65017 $$0V:(DE-MLZ)GC-1602-2016$$2V:(DE-HGF)$$aPolymers, Soft Nano Particles and Proteins$$x0 000872562 693__ $$0EXP:(DE-MLZ)KWS2-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS2-20140101$$6EXP:(DE-MLZ)NL3ao-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-2: Small angle scattering diffractometer$$fNL3ao$$x0 000872562 693__ $$0EXP:(DE-MLZ)J-NSE-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)J-NSE-20140101$$6EXP:(DE-MLZ)NL2ao-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eJ-NSE: Neutron spin-echo spectrometer$$fNL2ao$$x1 000872562 7001_ $$0P:(DE-Juel1)138266$$aSchrader, Tobias E.$$b1$$eCorresponding author$$ufzj 000872562 7001_ $$0P:(DE-Juel1)130905$$aRadulescu, Aurel$$b2$$ufzj 000872562 7001_ $$0P:(DE-Juel1)136992$$aZolnierczuk, Piotr$$b3$$ufzj 000872562 7001_ $$0P:(DE-Juel1)130718$$aHolderer, Olaf$$b4$$ufzj 000872562 7001_ $$0P:(DE-Juel1)145049$$aPasini, Stefano$$b5$$ufzj 000872562 7001_ $$0P:(DE-Juel1)131961$$aFitter, Jörg$$b6$$ufzj 000872562 7001_ $$0P:(DE-Juel1)140278$$aStadler, Andreas M.$$b7$$ufzj 000872562 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/s41598-020-57775-4$$gVol. 10, no. 1, p. 1570$$n1$$p1570$$tScientific reports$$v10$$x2045-2322$$y2020 000872562 8564_ $$uhttps://juser.fz-juelich.de/record/872562/files/Invoice_2676171434-1.pdf 000872562 8564_ $$uhttps://juser.fz-juelich.de/record/872562/files/Invoice_2676171434-1.pdf?subformat=pdfa$$xpdfa 000872562 8564_ $$uhttps://juser.fz-juelich.de/record/872562/files/s41598-020-57775-4.pdf$$yOpenAccess 000872562 8564_ $$uhttps://juser.fz-juelich.de/record/872562/files/s41598-020-57775-4.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000872562 8767_ $$82676171434$$92020-01-08$$d2020-01-20$$eAPC$$jZahlung erfolgt$$p2371fd53-bbcc-4ca7-9c32-5e137c1e555a$$zDublette FZJ-2020-00810 gelöscht 000872562 909CO $$ooai:juser.fz-juelich.de:872562$$pdnbdelivery$$popenCost$$pVDB$$pVDB:MLZ$$pdriver$$pOpenAPC$$popen_access$$popenaire 000872562 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171559$$aForschungszentrum Jülich$$b0$$kFZJ 000872562 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138266$$aForschungszentrum Jülich$$b1$$kFZJ 000872562 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130905$$aForschungszentrum Jülich$$b2$$kFZJ 000872562 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)136992$$aForschungszentrum Jülich$$b3$$kFZJ 000872562 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130718$$aForschungszentrum Jülich$$b4$$kFZJ 000872562 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145049$$aForschungszentrum Jülich$$b5$$kFZJ 000872562 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131961$$aForschungszentrum Jülich$$b6$$kFZJ 000872562 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140278$$aForschungszentrum Jülich$$b7$$kFZJ 000872562 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0 000872562 9132_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0 000872562 9141_ $$y2020 000872562 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000872562 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews 000872562 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000872562 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000872562 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record 000872562 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI REP-UK : 2017 000872562 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal 000872562 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ 000872562 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000872562 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000872562 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000872562 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000872562 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000872562 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000872562 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000872562 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000872562 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000872562 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central 000872562 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List 000872562 920__ $$lyes 000872562 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0 000872562 9201_ $$0I:(DE-Juel1)ICS-5-20110106$$kICS-5$$lMolekulare Biophysik$$x1 000872562 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kJCNS-1$$lNeutronenstreuung$$x2 000872562 9201_ $$0I:(DE-Juel1)JCNS-SNS-20110128$$kJCNS-SNS$$lJCNS-SNS$$x3 000872562 9801_ $$aAPC 000872562 9801_ $$aFullTexts 000872562 980__ $$ajournal 000872562 980__ $$aVDB 000872562 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218 000872562 980__ $$aI:(DE-Juel1)ICS-5-20110106 000872562 980__ $$aI:(DE-Juel1)JCNS-1-20110106 000872562 980__ $$aI:(DE-Juel1)JCNS-SNS-20110128 000872562 980__ $$aAPC 000872562 980__ $$aUNRESTRICTED 000872562 981__ $$aI:(DE-Juel1)IBI-6-20200312 000872562 981__ $$aI:(DE-Juel1)ER-C-3-20170113