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treatment. The edge Monte-Carlo plasma fluid code EMC3[6] does meet these requirements. Additionally, its algorithmic

structure via Markov chains renders the code a well aligned coupling partner to EIRENE: While in the latter, one follows

single particles undergoing chemical and physical transitions depending on the local background conditions, the former

does track plasma parcels, that is, packages of energy andmatter, fromwhich aforementioned background gets calculated.

For charged particles that are not of the main plasma species, the assumption of local thermodynamic equilibrium

might be wrong due to a short lifetime � life compared with the collision frequency �coll, where �coll� life ≪ 1. This renders

a fluid description, in which the ion velocity distribution is assumed to be Maxwellian, as insufficient. It has been shown

that, for example, the lower charge state impurities of carbon C+–C3+[8] and the minorities of helium He+[9] have to be

treated kinetically.

EIRENE holds the possibility of describing ion transport, albeit with reduced physical fidelity, namely field-line

tracing and energy relaxation only. Early approaches of including more effects for application in the two-dimensional

domain[10] have been extended to full 3D geometry.[11,12] In this work, we introduce the technical details of the introduc-

tion of first-order drift effects, anomalous cross-field diffusion, and magnetic mirror force into the kinetic ion transport

of EIRENE in the EMC3-EIRENE environment.

This paper is organized as follows. In Section 2, we introduce the underlying formulae, while Section 3 hosts the

explanation of the technical implementations into the full unstructured EMC3 grid. In Section 4, we evaluate and verify

the introduced algorithms and wrap up, and we draw conclusions for a forthcoming publication in Section 5.

2 PHYSICAL MODEL

The equation of motion for kinetic ions in EIRENE is of Fokker–Planck type

�f

�t
= −∇ ⋅ (�� ) + D⊥∇

2
⊥f , (1)

where f is the particle distribution function, �/�t is the partial derivative with respect to time t, ∇ is the Nabla-operator,

v is the particle velocity, and D⊥ is a perpendicular diffusion coefficient in the units m2/s denoting for turbulence effects.

A solution of Equation (1) is obtained by a Monte-Carlo approach, following the guiding centre orbits Δxgc of particles

given by

Δx	
 = v	
Δt +
√
D⊥Δt�̂, (2)

where vgc is the guiding centre velocity, Δt is an incremental time duration, and �̂ is a normalized random vector ∣ �̂ ∣= 1

perpendicular to the magnetic field �̂ ⋅ B = 0, where B is the magnetic flux density in vacuum ∇×B = 0. In the field-line

tracing approach, the guiding centre velocity is given by the component parallel to the magnetic field vgc = v‖ and the

diffusion is set to zeroD⊥ = 0. Note that in case of nonvanishingD⊥, the diffusion term in Equation (2) introduces position

kicks, which do not change the particle's kinetic energy.

A more complex physical model produces deviations from this field-line tracing approach. We introduce

vdrift =
E × B

B2
+
v2‖ + v2

⊥
∕2

qjB∕mj

B × ∇B

B2
, (3)

vmirror = −∫
1

2

v2
⊥

B
∇‖Bdt, (4)

whereE is the electric field,B is the absolute value ofB, v‖ and v⊥ are the absolute velocities in parallel ‖ and perpendicular
⊥ direction to B, respectively, qj and mj are the charge and mass, respectively, of a particle of species j. Equations (3)

and (4) are the standard expressions[13,14] for first-order electromagnetic particle drifts vdrift, consisting of E×B-, ∇B-,

and curvature-drift, and the magnetic mirror force vmirror being in charge of the conservation of the magnetic moment


 =mjv⊥2/2B.
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F IGURE 1 EMC3 brick; grid nodes on toroidal surfaces have a constant

azimuthal angle �, toroidally consecutive nodes lie on one magnetic field line

(blue), for trajectory integration a local coordinate tuple (l,m) on one surface

gets mapped to the next one (red dashed), requiring a displacement to (l′,m′)

if transverse effects (e.g., drifts, diffusion) are regarded (red solid)

Note that the total guiding centre velocity is now given by

vgc = v‖ + vdrift + vmirror (5)

Equations (2) and (5) imply that drifts and magnetic mirror force do change the guiding centre velocity vgc, while the

cross-field diffusion causes discrete jumps in random directions �̂.

Implementation of Equation (3) is straightforward, while Equation (4) is an ordinary differential equation in time,

which must be integrated. We implemented both, a Euler-forward and a fourth-order Runge–Kutta scheme, the latter

giving results more accurate (Section 4).

Note that drift motion is purely transversal to the parallel motion vdrift⋅v‖ = 0, while the mirror force acts purely

parallel vmirror × v‖ = 0. In the vicinity of a target, a gyro angle gets sampled and the integration is performed using the

fully resolved particle motion, including its gyration.

3 TRAJECTORY INTEGRATION IN UNSTRUCTURED GRIDS

In EMC3-EIRENE, grid information is stored on the EMC3 side, where cells are called bricks. While EIRENE uses Carte-

sian coordinates (x, y, z), EMC3 uses cylindrical coordinates (r, �, z), and, additionally for charged particles, local cell

coordinates (l, m). A computational brick in EMC3 consists of radial, toroidal, and poloidal surfaces, which are again

split into two typically non-parallel triangles each. Toroidal surfaces share a fixed azimuthal angle � and two toroidally

consecutive brick nodes lie on one single magnetic field line, as can be seen in blue in Figure 1. Trajectory integration

in such unstructured grids is different for neutral and charged particles, as for the former it is straightforward. For the

latter, if transverse effects are disregarded, the next intersecting surface can only be toroidal. If an ion does not perform

any collisional events during its time of flight in one brick, its local coordinates (l,m) on one toroidal face get mapped to

the next one. For EIRENE, which intrinsically is unable to host curved trajectories, the two intersection points produce

a virtual and straight path vvirt which is followed, resulting in a small mistake by underestimating the travelled distance.

If the particle does perform a collision, above's procedure stays the same, but for the fact that a virtual toroidal surface is

set up in the brick to which the local coordinates (l,m) get mapped.

By the addition of drifts, diffusion, and the mirror force, this trajectory integration is now changed: The

above-mentioned virtual velocity vvirt is altered in its components transverse to the magnetic field by drifts and diffusion,

resulting in a new virtual velocity vvirt′. As now it is also possible that the trajectory intersects a radial or poloidal surface,

the location on the initial toroidal surface (l,m) can no longer be simply mapped. With vvirt′, one enters the EMC3 inte-

gration scheme for neutral particles, which returns the correct next intersection point and surface. After the projection

to the next surface is done, the change to the parallel velocity v‖ (and, because of energy conservation, to the perpendic-

ular velocity v⊥) due to the mirror force is calculated. This change might result in a sign-flip, causing the particle to turn.

Obviously, this introduces another error, as the sign-flip might occur before the particle is projected to the next intersec-

tion. However, this error is on the same order of accuracy as the whole trajectory integration in unstructured bricks and,

thus, negligible.
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Equations (3) and (4) require the gradient of the magnetic field strength∇B at an arbitrary position inside a brick. An

optimized scheme, harnessing theB-field accuracy of EMC3 bricks, has been implemented. There is one absolute value B

stored at each brick node, the directionB/B implicitly given in the grid construction. For interpolation, a bilinearmapping

is applied, namely a calculation of B at the projected position (l, m) at each toroidal face in combination with a linear

interpolation between the two angles �t at one surface and �t+ 1 at the consecutively next one. This way, the gradient

of the magnetic field strength can be obtained much faster than in the previously used Cartesian stencil[11] approach,

which is important if the code enhancements introduced in this paper shall be optimized and, thus, be relevant to the

user community of EMC3-EIRENE.

Note that Feng et al. are currently working on the self-consistent calculation of the electric field.[15] Therefore, the

here presented enhancements can only host either a hard-coded or externally read-in electric field, which is necessary to

calculate the first term on the right-hand-side of Equation (3), denoting the E×B-drift contribution. As this term is not

self-consistently calculated, it is artifically omitted in the following investigations. Furthermore, we remark that parallel

variations of the equilibrium potential might be considerable in the tokamak edge region. Hence, the electric field will

exhibit a parallel compontent E‖ which must be considered in the parallel motion however, it is neglected for the time

being as no self-consistent calculation is possible.

4 VERIFICATION

Verification of new code development is an indispensable aspect of proper enhancement of the included physics. For

the case study presented here, we use an envisaged ITER scenario from the baseline 2008 database, ΨN = 0.83, case

2297.[16] This is a deuterium plasma case in which we artificially seed nitrogen for verifying our enhancements, using a

fourth-order Runge–Kutta integration scheme for solving Equation (4).

Evaluating multiple single particle trajectories tracing along the magnetic field while collisions were turned off, we

analysed the the transverse displacement L⊥ in the projected R-z plane with respect to the travelled distance in longi-

tudinal direction L‖. From this transverse displacement L⊥, which is purely due to numerically erroneous integration,

we can deduce a numerical diffusion coefficient Dnum ∼L⊥2/2 t, where t = L‖/vgc. For t = 1 s we found a parallel

length of L‖ ≈ 200 km and a perpendicular displacement of L⊥ ≈ 3.5 cm, resulting in a numerical diffusion coefficient of

Dnum ≈ 10−5 m2/s. Compared with typically used quanta for transverse diffusion coefficients of D⊥ ≈ 1 m2/s, the numer-

ical diffusion is negligibly small Dnum≪D⊥, and, hence, the integration scheme introduced in Section 3 is positively

evaluated.

Amore advanced verification scheme uses the differentiation of particle orbits into passing and trapped ones. For such

banana orbits, as the latter are called, there exists analytic theory valid in spherical plasmas, which are axisymmetric and

where B is given analytically. By analysing such orbits, one can evaluate the interplay between∇B- and curvature-drift, as

well as mirror force, which are necessary for observing banana orbits.[13] The critical value for deciding whether a particle

is trapped or passing is the pitch angle �, which is given by the square root of the ratio of energies � =
√
E‖∕E⊥ that

is stored in the parallel motion and in the gyration, respectively. One finds, for spherical plasmas and an axisymmetric

magnetic field,

�crit =

√
2r

R0 − r
, (6)

dbanana = 2
v‖mj

qjB�

, (7)

where �crit is the critical pitch angle abovewhich an orbit is supposed to be passing, r is the distance of a particle orbit from

the centre of the plasma, R0 is the major radius, dbanana is the diameter of a banana of particle j, and B� is the magnetic

field value in polar direction, when (r, �, �) is the set of spherical coordinates.

For ITERwe findR0 = 6.2m and insert non-colliding singly charged nitrogen ionsmj = 14 u, where u≈ 1.66× 10−27 kg

is the atomic mass unit, qj = 1 e, where e≈ 1.6× 10−19 C is the elementary charge with v‖ ≈ 1.9× 105m/s at the position

r≈ 1.9 m, where we find B� ≈ 1.2 T. These values give us a critical pitch angle of �crit ≈ 0.25. As applying this theory

Equations (6) and (7) to ITER geometry is already overextending the model boundaries, we choose two pitch angles �1, 2,

which are well above and below, respectively, the critical one.
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F IGURE 2 Trapped ion orbit with the pitch angle below critical �1 <�crit

F IGURE 3 Passing ion orbit with the pitch angle above critical �2 >�crit

Figures 2 and 3 show the two-dimensional projection of two particle orbits, one with �1 = 0.21 (in Figure 2), and

one with �2 = 0.3 (in Figure 3). The injection point is marked with a red star. We do find indeed the pitch angle

�1 <�crit to exhibit a trapped ion orbit (Figure 2) measuring the diameter of the projected banana to be dbanana ≈ 1 cm,

which agrees with what is predicted from theory Equation (7). Going beyond the critical value of � by choosing

�2 >�crit, we find the ion to be passing (Figure 3). These findings verify the correctness of our implemented curva-

ture, ∇B-drift, and mirror force, although overestimating the predictive power of the simple analytic theory given in

Equations (6) and (7).

5 SUMMARY AND OUTLOOK

We introduced some very fundamental physical enhancements of the kinetic ion transport part of EIRENE, namely by

adding first-order drift effects, cross-field diffusion, and magnetic mirror force. These additions, which are relevant for

thoroughly investigating the full three-dimensional influence of impurities on actual fusion devices, have been verified

by analysing passing and trapped particle orbits, as well as checking on the introduction of numerical diffusion by our

integration scheme. A full three-dimensional ITER case study, where the influence of nitrogen impurity seeding on the

deuterium background plasma is being incorporated using this enhanced EIRENE kinetic ion transport, is subject of a

forthcoming publication.
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For the fluid code community, it might be interesting to model ion species kinetically and track their collisionality.

This way, justification for the physically always less accurate description assuming local thermodynamic equilibrium

might be found.

Application of the here-presented enhancements to heavier impurity species such as tungsten requires a revision of

the Fokker–Planck collision operator on which such Coulomb collisions of heavier constituents rely.[17]

ACKNOWLEDGMENTS

The author thanksMichael Rack for proofreading and constant support. The author thanksMarcoWischmeier for fruitful

discussions. This work has been carried out within the framework of the EUROfusion Consortium and has received

funding from the Euratom research and training programme 2014–2018 under grant agreement No 633053. The views

and opinions expressed herein do not necessarily reflect those of the European Commission. This work was supported by

the EUROfusion-Theory and Advanced Simulation Coordination (E-TASC) and has received funding from the Euratom

research and training programme 2019–2020 under grant agreementNo 633053. The views and opinions expressed herein

do not necessarily reflect those of the European Commission. The authors gratefully acknowledge the computing time

granted through JARA-HPC on the supercomputer JURECA at Forschungszentrum Jülich.

REFERENCES

[1] D. Reiter, M. Baelmans, P. Börner, Fusion Sci. Technol. 2005, 47(2), 172.

[2] http://www.eirene.de

[3] A. S. Kukushkin, H. D. Pacher, V. Kotov, G. W. Pacher, D. Reiter, Fusion Eng. Des. 2011, 86(12), 2865.

[4] S. Wiesen, D. Reiter, V. Kotov, M. Baelmans, W. Dekeyser, A. S. Kukushkin, S. W. Lisgo, R. A. Pitts, V. Rozhansky, G. Saibene, I. Veselova,

S. Voskoboynikov, J. Nucl. Mater. 2015, 463, 480.

[5] H. Bufferand, G. Ciraolo, Y. Marandet, J. Bucalossi, P. Ghendrih, J. Gunn, N. Mellet, P. Tamain, R. Leybros, N. Fedorczak, F. Schwander,

E. Serre, Nucl. Fusion 2015, 55, 053025.

[6] Y. Feng, F. Sardei, J. Kisslinger, J. Nucl. Mater. 1999, 812, 266.

[7] P. Tamain, H. Bufferand, G. Ciraolo, C. Colin, D. Galassi, P. Ghendrih, F. Schwander, E. Serre, J. Comput. Phys. 2016, 321, 606.

[8] D. Reiser, D. Reiter, M. Z. Tokar, Nucl. Fusion 1998, 38(2), 165.

[9] M. Rack, D. Reiter, F. Hasenbeck, Y. Feng, P. Börner, A. C. Weger, J. Cosfeld, Nucl. Fusion 2017, 57, 056011.

[10] J. Seebacher, A. Kendl, Comput. Phys. Commun. 2012, 183, 947.

[11] F. Schluck, M. Rack, Y. Feng, EPS Prague 2018.

[12] F. Schluck, et al., IAEA-FEC, TH/P1-5, (2018)

[13] J. Wesson, Tokamaks, Vol. 4, Oxford University Press, Oxford, 2011, Chapter 2.6f.

[14] D. Harting, D. Reiter, Juel-Report 4173, Forschungszentrum Jülich, Zentralbibliothek, Verlag, 2005.

[15] Y. Feng, et al, PSI Princeton, Princeton University, NJ, 2018.

[16] H. Frerichs, private communication. http://www.iter.org

[17] B. A. Trubnikov, Part. Inter. Fully Ionized Plasma 1965, 1, 105.

How to cite this article: Schluck F. Integration of kinetic ions in a three-dimensional Monte-Carlo neutral

transport code. Contributions to Plasma Physics. 2020;60:e201900144. https://doi.org/10.1002/ctpp.201900144


