000872566 001__ 872566
000872566 005__ 20210130004228.0
000872566 0247_ $$2doi$$a10.1126/sciadv.aav1027
000872566 0247_ $$2Handle$$a2128/24322
000872566 0247_ $$2altmetric$$aaltmetric:48095956
000872566 0247_ $$2pmid$$apmid:31392264
000872566 0247_ $$2WOS$$aWOS:000478770400013
000872566 037__ $$aFZJ-2020-00072
000872566 082__ $$a500
000872566 1001_ $$00000-0003-3816-1478$$aZhang, Xiaozhu$$b0$$eCorresponding author
000872566 245__ $$aFluctuation-induced distributed resonances in oscillatory networks
000872566 260__ $$aWashington, DC [u.a.]$$bAssoc.$$c2019
000872566 3367_ $$2DRIVER$$aarticle
000872566 3367_ $$2DataCite$$aOutput Types/Journal article
000872566 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1581423155_14642
000872566 3367_ $$2BibTeX$$aARTICLE
000872566 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000872566 3367_ $$00$$2EndNote$$aJournal Article
000872566 520__ $$aAcross physics, biology, and engineering, the collective dynamics of oscillatory networks often evolve into self-organized operating states. How such networks respond to external fluctuating signals fundamentally underlies their function, yet is not well understood. Here, we present a theory of dynamic network response patterns and reveal how distributed resonance patterns emerge in oscillatory networks once the dynamics of the oscillatory units become more than one-dimensional. The network resonances are topology specific and emerge at an intermediate frequency content of the input signals, between global yet homogeneous responses at low frequencies and localized responses at high frequencies. Our analysis reveals why these patterns arise and where in the network they are most prominent. These results may thus provide general theoretical insights into how fluctuating signals induce response patterns in networked systems and simultaneously help to develop practical guiding principles for real-world network design and control.
000872566 536__ $$0G:(DE-HGF)POF3-153$$a153 - Assessment of Energy Systems – Addressing Issues of Energy Efficiency and Energy Security (POF3-153)$$cPOF3-153$$fPOF III$$x0
000872566 536__ $$0G:(HGF)VH-NG-1025_20112014$$aVH-NG-1025 - Helmholtz Young Investigators Group "Efficiency, Emergence and Economics of future supply networks" (VH-NG-1025_20112014)$$cVH-NG-1025_20112014$$x1
000872566 588__ $$aDataset connected to CrossRef
000872566 7001_ $$00000-0002-7026-7937$$aHallerberg, Sarah$$b1
000872566 7001_ $$0P:(DE-Juel1)167215$$aMatthiae, Moritz$$b2
000872566 7001_ $$0P:(DE-Juel1)162277$$aWitthaut, Dirk$$b3
000872566 7001_ $$00000-0002-5956-3137$$aTimme, Marc$$b4
000872566 773__ $$0PERI:(DE-600)2810933-8$$a10.1126/sciadv.aav1027$$gVol. 5, no. 7, p. eaav1027 -$$n7$$peaav1027$$tScience advances$$v5$$x2375-2548$$y2019
000872566 8564_ $$uhttps://juser.fz-juelich.de/record/872566/files/Zhang%20et%20al.%20-%202019%20-%20Fluctuation-induced%20Distributed%20Resonances%20in%20Osci.pdf$$yOpenAccess
000872566 8564_ $$uhttps://juser.fz-juelich.de/record/872566/files/Zhang%20et%20al.%20-%202019%20-%20Fluctuation-induced%20Distributed%20Resonances%20in%20Osci.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000872566 909CO $$ooai:juser.fz-juelich.de:872566$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000872566 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162277$$aForschungszentrum Jülich$$b3$$kFZJ
000872566 9131_ $$0G:(DE-HGF)POF3-153$$1G:(DE-HGF)POF3-150$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lTechnologie, Innovation und Gesellschaft$$vAssessment of Energy Systems – Addressing Issues of Energy Efficiency and Energy Security$$x0
000872566 9141_ $$y2019
000872566 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000872566 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000872566 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI ADV : 2017
000872566 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bSCI ADV : 2017
000872566 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000872566 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000872566 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000872566 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000872566 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000872566 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000872566 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review
000872566 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000872566 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000872566 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000872566 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000872566 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000872566 920__ $$lno
000872566 9201_ $$0I:(DE-Juel1)IEK-STE-20101013$$kIEK-STE$$lSystemforschung und Technologische Entwicklung$$x0
000872566 980__ $$ajournal
000872566 980__ $$aVDB
000872566 980__ $$aUNRESTRICTED
000872566 980__ $$aI:(DE-Juel1)IEK-STE-20101013
000872566 9801_ $$aFullTexts