001     872567
005     20220930130227.0
024 7 _ |a 10.1038/s41598-019-56286-1
|2 doi
024 7 _ |a 2128/24324
|2 Handle
024 7 _ |a altmetric:73310507
|2 altmetric
024 7 _ |a pmid:31882778
|2 pmid
024 7 _ |a WOS:000509310400001
|2 WOS
037 _ _ |a FZJ-2020-00073
082 _ _ |a 600
100 1 _ |a Weber, Juliane
|0 P:(DE-Juel1)169298
|b 0
245 _ _ |a Wind power persistence characterized by superstatistics
260 _ _ |a [London]
|c 2019
|b Macmillan Publishers Limited, part of Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1581424049_17218
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Mitigating climate change demands a transition towards renewable electricity generation, with wind power being a particularly promising technology. Long periods either of high or of low wind therefore essentially define the necessary amount of storage to balance the power system. While the general statistics of wind velocities have been studied extensively, persistence (waiting) time statistics of wind is far from well understood. Here, we investigate the statistics of both high- and low-wind persistence. We find heavy tails and explain them as a superposition of different wind conditions, requiring q-exponential distributions instead of exponential distributions. Persistent wind conditions are not necessarily caused by stationary atmospheric circulation patterns nor by recurring individual weather types but may emerge as a combination of multiple weather types and circulation patterns. This also leads to Fréchet instead of Gumbel extreme value statistics. Understanding wind persistence statistically and synoptically may help to ensure a reliable and economically feasible future energy system, which uses a high share of wind generation.
536 _ _ |a 153 - Assessment of Energy Systems – Addressing Issues of Energy Efficiency and Energy Security (POF3-153)
|0 G:(DE-HGF)POF3-153
|c POF3-153
|f POF III
|x 0
536 _ _ |a CoNDyNet - Kollektive Nichtlineare Dynamik Komplexer Stromnetze (PIK_082017)
|0 G:(Grant)PIK_082017
|c PIK_082017
|x 1
536 _ _ |a CoNDyNet 2 - Kollektive Nichtlineare Dynamik Komplexer Stromnetze (BMBF-03EK3055B)
|0 G:(DE-JUEL1)BMBF-03EK3055B
|c BMBF-03EK3055B
|x 2
536 _ _ |a VH-NG-1025 - Helmholtz Young Investigators Group "Efficiency, Emergence and Economics of future supply networks" (VH-NG-1025_20112014)
|0 G:(HGF)VH-NG-1025_20112014
|c VH-NG-1025_20112014
|x 3
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Reyers, Mark
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Beck, Christian
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Timme, Marc
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Pinto, Joaquim G.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Witthaut, Dirk
|0 P:(DE-Juel1)162277
|b 5
|e Corresponding author
|u fzj
700 1 _ |a Schäfer, Benjamin
|0 P:(DE-HGF)0
|b 6
773 _ _ |a 10.1038/s41598-019-56286-1
|g Vol. 9, no. 1, p. 19971
|0 PERI:(DE-600)2615211-3
|n 1
|p 19971
|t Scientific reports
|v 9
|y 2019
|x 2045-2322
856 4 _ |u https://juser.fz-juelich.de/record/872567/files/invoice_2676167943.pdf
|y Restricted
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/872567/files/Weber%20et%20al.%20-%202019%20-%20Wind%20Power%20Characterized%20by%20Superstatistics.pdf
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/872567/files/invoice_2676167943.pdf?subformat=pdfa
|y Restricted
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/872567/files/Weber%20et%20al.%20-%202019%20-%20Wind%20Power%20Characterized%20by%20Superstatistics.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:872567
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)162277
913 1 _ |a DE-HGF
|l Technologie, Innovation und Gesellschaft
|1 G:(DE-HGF)POF3-150
|0 G:(DE-HGF)POF3-153
|2 G:(DE-HGF)POF3-100
|v Assessment of Energy Systems – Addressing Issues of Energy Efficiency and Energy Security
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCI REP-UK : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)IEK-STE-20101013
|k IEK-STE
|l Systemforschung und Technologische Entwicklung
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-STE-20101013
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21